
 Akash K Singh / International Journal of Engineering Research and Applications  

(IJERA)                ISSN: 2248-9622               www.ijera.com  

Vol. 2, Issue 6, November- December 2012, pp. 

126 | P a g e  

 

Role Based Trust Management Security Policy Analysis 

Akash K Singh, PhD 
IBM CorporationSacramento, USA 

 

Abstract 

 We use symmetric keys to encrypt and 

decrypt attribute values. These keys are 

distributed only to the brokers that are trusted 

with the attribute values. The system will never 

deliver these keys to clients. This reduces the 

number of nodes that are trusted with sensitive 

keys, and that take part in key management 

protocols. This does not affect security since local 

brokers encrypt and decrypt attribute values on 

behalf of connected clients, and deliver events to 

clients over secure links. To support 

cryptographic properties such as key freshness, 

and forward and backward secrecy [22], the 

system requires key management service(s). A 

representation of quantified trust relationships, 

the trust dependency graph, and a sample 

QuanTM application specific to the KeyNote 

trust management language, are also proposed. 

 

Keywords- Symmetric keys, Trust Management 

I. INTRODUCTION 
 Creating software which is flexible and 

highly customizable to adapt to fast changing 

business needs has moved into the main focus of 

software developers. Enterprises demand a seamless 

communication between applications independent 

from the platform on which they run and even 

across domain boundaries. Service-oriented 

Architectures and XML Web Services have been 

designed to meet these concerns, allowing a flexible 

integration of services provided by independent 

business partners. However, the seamless and 
straightforward integration of cross-organisational 

services conflicts with the need to secure and 

control access to these services. The traditional 

approach to restrict service access is based on user 

authentication performed by the service provider 

itself, cf. [18]. Since credentials (e.g. user name and 

password) needed to access a service are issued and 

managed by the service provider, this approach is 

referred to as isolated identity management as stated 

in [13]. It requires service users to register a digital 

identity at each involved service provider and to 

authenticate separately for each service access. 
Federated Identity Management as a new identity 

model provides solutions for these problems by 

enabling the propagation of identity information to 

services located in different trust domains. It enables 

service users to access all services in a federation 

using the same identification data. Several 

frameworks and standards for Federated Identity  

 

Management have been specified (e.g. WS-
Federation [1] and Liberty Identity Web Services 

Framework (ID-WSF) 2.0 [31]). The key concept in 

a federation is the establishment of trust whereby all 

parties in a federation are willing to rely on asserted 

claims about a digital identity such as SAML 

assertions [24]. As Service-oriented Architectures 

move from an isolated identity management scheme 

to a federated identity management, service 

providers are exposed to new risks. In a federation 

the authentication of a user is not necessarily 

performed within the service provider‘s domain, but 

can be done within the user‘s local domain. 
Consequently, the service provider has to trust the 

authentication performed by the user‘s identity 

provider. In terms of security this is a critical 

situation since authorization and access control of 

the service are highly dependent on the 

authentication results. A weak authentication 

jeopardises the dependent service‘s security by 

increasing the risk that a user can personate as 

someone else and gain improper access. OASIS 

considers this as a serious risk [23] and recommends 

to agree on a common trust level in terms of 
policies, procedures and responsibilities to ensure 

that a relying party can trust the processes and 

methods used by the identity provider. Jøsang et. al. 

[13] describe the usage of such a common trust level 

as a symmetric trust relationship, since all parties 

are exposed to an equal risk in the case of failure. 

As opposed to this, having different trust 

requirements and mechanisms is referred to as an 

asymmetric trust relationship. They argue that 

asymmetric trust relationships are hard to establish, 

since the parties are exposed to different risks in the 

case of failure. However, with regard to complex 
SOA – that might be based on the dynamic selection 

of services and service providers – defining and 

enforcing a common trust level is disadvantageous: 

A symmetric trust relationship between the 

providers in a federation would require a trust level, 

which is sufficient for the service with the strongest 

authentication requirements. These requirements, 

however, might not be necessary for all services 

within the federation and might change if this 

service is dynamically replaced. Consequently, users 

are forced to authenticate by a predefined strong 
authentication method, even though weak 

authentication would be sufficient for the service 

they want to access. Likewise, when users are fixed 

to a predefined authentication method according to 

the specified trust level, access will be denied even 
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though the user might be able to verify his identity 

in an even more trusted way. Altogether, there is a 

growing demand for more flexibility in 

authentication processes in SOA. To achieve this 

flexibility, a way to rate the trust relationship 

between identity provider and service provider is 

needed in order to restrict the service access based 
on an individual trust level. The general idea of 

classifying authentication methods according to 

their level of trustworthiness is not new. Especially 

in the field of e-Government, various countries have 

launched e-authentication initiatives in order to 

secure access to critical e-Government services [26, 

11, 17, 5]. All of these initiatives have in common 

that they define authentication trust levels – mostly 

four different levels – in a way that covers the main 

use cases, reaching from ―no security needed‖ to 

―critical application‖. For each level, requirements 

for the authentication process are defined. This 
means, authentication methods are always assigned 

to predefined levels, but not the other way around. 

To provide authentication in a truly flexible manner, 

we present in this paper: 

• A formal definition of trust levels to quantify the 

trust that is established by using a particular 

authentication method. This definition is globally 

applicable and not restricted to a specific use case 

setting requiring specific bootstrapping algorithms. 

This way, the meaning of a trust level based on our 

approach is clear and can be applied to any use case 
without the need to know any further set up or 

environment parameters. 

• A mathematical model to combine different 

authentication methods as used in a two-factor 

authentication and to calculate their combined 

authentication trust level. 

• An example calculation that demonstrates the 

applicability of our mathematical model to existing 

authentication methods. 

This paper is organized as follows. Section 2 

provides an overview about related work and current 

efforts in this area. In Section 3 we present our 
approach for assessing and quantifying trust in 

authentication methods. This section gives a 

definition for an authentication trust level and shows 

how this level can be determined. Section 4 

introduces a mathematical model to calculate the 

trust value for the combination of two authentication 

methods taking into account the similarity of two 

mechanisms. To demonstrate the effect of the 

similarity on the combined trust level, an example 

calculation is presented in Section 5. Finally, 

Section 6 concludes this paper and highlights some 
future work.  The emergence of distributed 

topologies and networked services has resulted in 

applications that are stored, maintained, and 

accessed remotely via a client/server model. The 

advantages of such a setup are many, but the 

challenges of access control and identity 

management must be addressed. Trust management 

and reputation management are two differing 

approaches to the problem. While effective with 

regard to explicit declarations, trust management 

lacks applicability when relationships are 

characterized by uncertainty. Thus, trust 

management is useful in enforcing existing trust 

relationships but ineffective in the formation of 
partially trusted ones. Reputation management 

provides a means of quantifying trust relationships 

dynamically, but lacks access enforcement and 

delegation mechanisms. To address this divide we 

introduce the notion of Quantitative Trust 

Management (QTM), an approach that merges 

concepts from trust and reputation management. It 

(QTM) creates a method for specifying both policy 

and reputation for dynamic decision making in 

access control settings. A system built upon QTM 

can not only enforce delegated authorizations but 

also adapt its policy as partial information becomes 
more complete. The output is a quantitative trust 

value that expresses how much a policy-based 

decision should be trusted given the reputations of 

the entities involved. Further, to make this novel 

concept concrete, we propose QuanTM, an 

architecture for supporting QTM. In this application 

of QuanTM, we use the KeyNote [8, 7] (KN) trust 

management language and specification, due to its 

well defined delegation logic and compliance 

system. Summarily, a KN evaluator checks a user‘s 

access credentials against local policy to produce a 
compliance value from a finite and predefined set of 

values. The compliance value is then used to make 

access decisions. KN allows principals to delegate 

access rights to other principals without affecting 

the resulting compliance value. Further, KN is 

monotonic: If a given request evaluates to some 

compliance value, adding more credentials or 

delegations will not lower that value. We argue that 

credentials should not be explicitly trusted, nor 

should the trustworthiness of delegating principals 

be ignored. Furthermore, the result of evaluation for 

a given access request may need to be dynamic [9]. 
Service providers may find it desirable to arrive at 

different opinions based on local constraints, 

policies, and principals for the same request. In 

QuanTM, this is easily expressed. We address these 

issues in the following two ways: (1) It includes a 

means to dynamically assign reputation to principals 

and their relationships within a request, and (2) It 

provides a mechanism for combining this 

information to produce a trust value. In QuanTM, a 

trust value (often a real number) is used to represent 

the the trustworthiness of a given compliance value 
and how it was reached. Our proposed QuanTM 

architecture (see Fig. 1) consists of three sub-

systems 

1. Trust management consists of a trust language 

evaluator that verifies requests meet policy 

constraints, and a trust dependency graph (TDG) 
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extractor that constructs a graph representing trust 

relationships. 

2. Reputation management consists of two modules. 

First, a reputation algorithm to dynamically produce 

reputation values by combining feedback. These 

reputation values weigh TDG edges. Second, a 

reputation quantifier computes the trust value for a 
given request by evaluating the weighted TDG. 

3. Decision management is composed of a decision 

maker that arrives at an access determination based 

on a trust 

value, context, and an application specific meta-

policy that encodes a cost-benefit analysis. The 

design of QuanTM has been guided by the 

requirement that the individual components will be 

application specific, and thus, we have designed 

QuanTM modularly. QuanTM provides a simple 

interface by which different trust management 

languages, reputation algorithms, and decision 
procedures may be included. In this paper, we 

propose a QuanTM design instance that utilizes the 

KeyNote language and TNA-SL [11, 12] reputation 

algorithm. This instance‘s implementation and 

evaluation is the subject of future work. 

A. Background  

 Several approaches to define levels of 

trustworthiness for authentication mechanisms have 

been proposed in recent years indicating the 

importance of such a concept. In the area of e-

Government, the UK Office of the e-Envoy has 
published a document called ―Registration and 

Authentication – e-Government Strategy 

Framework Policy and Guideline‖ [26]. In this 

document the initial registration process of a person 

with the system as well as the authentication process 

for a user‘s engagement in an e-Government 

transaction are defined. Depending on the severity 

of consequences that might arise from unauthorized 

access, four authentication trust levels are defined, 

reaching from Level 0 for minimal damage up to 

Level 3 for substantial damage. The IDABC [11] 

(Interoperable Delivery of European eGovernment 
Services to public Administrations, Businesses and 

Citizens) is a similar project managed by the 

European Commission. It publishes 

recommendations and develops common solutions 

in order to improve the electronic communication 

within the public sector. Its Authentication Policy 

Document [7] defines four assurance levels as well, 

which are also associated with the potential damage 

that could be caused. For each of the four levels the 

document defines the requirements for the 

registration phase and for the electronic 
authentication. The e-Authentication Initiative is a 

major project of the e-Government program of the 

US. The core concept is a federated architecture 

with multiple e-Government applications and 

credential providers. The intention is that the e-

Authentication Initiative provides an architecture 

which delivers a uniform, government-wide 

approach for authentication while leaving the choice 

of concrete authentication technologies with the 

individual government agencies. In this context, the 

initiative has published a policy called 

―EAuthentication Guidance for Federal Agencies‖ 

[5] to assist agencies in determing the appropriate 
level of identity assurance for electronic 

transactions. The document defines four assurance 

levels, which are based on the risks associated with 

an authentication error. Which technical 

requirements apply for each assurance level is 

described in a recommendation of the National 

Institute of Standards and Technology (NIST), 

which is called 

 

II. ROLE BASED TRUST POLICY ANALYSIS 
Policy analysis [12] as we consider it here 

examines whether the specified relationships 

between roles hold in all reachable policy states. We 
explain reachable policy states below. The 

relationships, called queries, are set containments 

and take the form % w _ in which % and _ are each 

either roles or explicit (constant) sets of principals. 

For instance, X.u w A.r holds if every member of 

A.r is a member of X.u in every reachable policy 

state P0, i.e., [[A.r]]P0 _ [[X.u]]P0 . Queries of this 

form can be used to express many important 

security properties such as availability, safety, 

liveness and mutual exclusion. For instance, a safety 

property might be that everyone in the role that has 

access to the secret database is in the employee role. 
In general, any policy state can evolve into any 

other policy state by having principals issue new 

policy statements and revoke old ones. In security 

analysis we ask whether queries hold in all policy 

states that differ from a given current policy state 

only by changes to roles outside some trusted set. 

Intuitively, this corresponds to the fact that we 

expect certain principals to cooperate with us in our 

goal of preserving certain desired security 

properties. Specifically we assume that to this end 

these principals agree not to add or remove 
statements defining certain roles that they control. 

Other roles are not be assumed to be managed in 

cooperation with our goals. This intuition leads [12] 

to the defined two sets of roles that are used to 

determine the reachable policy states, the set of 

growth-restricted roles GR and the set of shrink-

restricted roles SR. Such a pair is called a restriction 

rule and is denoted by R = (GR, SR). Growth-

restricted roles (GR) are not allowed to have new 

statements defining them added to the state. Shrink-

restricted roles (SR) are not allowed to have 

statements defining them removed. We write P _ 
7!R P0 to indicate that P0 _GR_ P and P0 _ P _SR . 

It is important to note that these restrictions are not 

actually enforced. They are simply assumptions 

under which the analysis is performed. Their 
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presence enables the analysis to provide us with 

assurances of things like, ―So long as the people I 

trust do not make policy changes without first 

running the analysis, only company employees will 

be able to access the secret database.‖ Queries of 

certain restricted forms can be analyzed and verified 

in polynomial time. These include queries in which 
at least one of % and _ is an explicit set. They also 

include situations in which only Type I and Type II 

statements are allowed in the policy state. However, 

when both % and _ are roles and all forms of 

statements are allowed, the decision problem is 

EXPTIME complete [20]. This is unfortunate 

because such properties are extremely useful. For 

instance, suppose we want to determine whether 

only employees could ever get access to a 

company‘s secret database. This can be determined 

efficiently if the set of employees is enumerated 

explicitly in the query. However, this does not 
consider the effect of employee turnover. By 

identifying employees and those users with access to 

the database both as roles, we can determine 

whether the desired property will continue to hold as 

new employees are added. Thus we seek techniques 

that can solve queries of this general form as often 

as possible.  

 We consider the following anycast field 

equations defined over an open bounded piece of 

network and /or feature space 
dR . They 

describe the dynamics of the mean anycast of each 

of p node populations. 

|

1

( ) ( , ) ( , ) [( ( ( , ), ) )]

(1)
( , ), 0,1 ,

( , ) ( , ) [ ,0]
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i i ij j ij j

j
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i

i i

d
l V t r J r r S V t r r r h dr
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I r t t i p

V t r t r t T









   




   
   



  

 We give an interpretation of the various 

parameters and functions that appear in (1),   is 

finite piece of nodes and/or feature space and is 

represented as an open bounded set of 
dR . The 

vector r  and r  represent points in   . The 

function : (0,1)S R  is the normalized sigmoid 

function: 

1
( ) (2)

1 z
S z

e



  

It describes the relation between the input rate iv  of 

population i  as a function of the packets potential, 

for example, [ ( )].i i i i iV v S V h    We note 

V  the p   dimensional vector 1( ,..., ).pV V The 

p  function , 1,..., ,i i p   represent the initial 

conditions, see below. We note   the  p   

dimensional vector 1( ,..., ).p   The p  function 

, 1,..., ,ext

iI i p  represent external factors from 

other network areas. We note 
extI  the p   

dimensional vector 
1( ,..., ).ext ext

pI I The p p  

matrix of functions , 1,...,{ }ij i j pJ J   represents the 

connectivity between populations i  and ,j  see 

below. The p  real values , 1,..., ,ih i p  

determine the threshold of activity for each 

population, that is, the value of the nodes potential 

corresponding to 50% of the maximal activity. The 

p real positive values , 1,..., ,i i p   determine 

the slopes of the sigmoids at the origin. Finally the 

p real positive values , 1,..., ,il i p   determine 

the speed at which each anycast node potential 

decreases exponentially toward its real value. We 

also introduce the function : ,p pS R R  defined 

by 1 1 1( ) [ ( ( )),..., ( ))],p pS x S x h S h     

and the diagonal p p  matrix 

0 1( ,..., ).pL diag l l Is the intrinsic dynamics of 

the population given by the linear response of data 

transfer. ( )i

d
l

dt
  is replaced by 

2( )i

d
l

dt
  to use 

the alpha function response. We use ( )i

d
l

dt
  for 

simplicity although our analysis applies to more 

general intrinsic dynamics. For the sake, of 

generality, the propagation delays are not assumed 

to be identical for all populations, hence they are 

described by a matrix ( , )r r  whose element 

( , )ij r r is the propagation delay between 

population j  at r  and population i  at .r  The 

reason for this assumption is that it is still unclear 

from anycast if propagation delays are independent 
of the populations. We assume for technical reasons 

that   is continuous, that is 
20( , ).p pC R 

   

Moreover packet data indicate that   is not a 

symmetric function i.e., ( , ) ( , ),ij ijr r r r   thus 

no assumption is made about this symmetry unless 

otherwise stated. In order to compute the righthand 

side of (1), we need to know the node potential 

factor V  on interval [ ,0].T  The value of T  is 

obtained by considering the maximal delay: 

 ,
, ( , )

max ( , ) (3)m i j
i j r r

r r 


   

 

A. Mathematical Framework 
 A convenient functional setting for the 

non-delayed packet field equations is to use the 
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space 
2 ( , )pF L R   which is a Hilbert space 

endowed with the usual inner product: 

 
1

, ( ) ( ) (1)
p

i iF
i

V U V r U r dr




   

To give a meaning to (1), we defined the history 

space 
0 ([ ,0], )mC C F   with 

[ ,0]sup ( ) ,
mt t F    which is the Banach 

phase space associated with equation (3). Using the 

notation ( ) ( ), [ ,0],t mV V t        we 

write (1) as  

.

0 1

0

( ) ( ) ( ) ( ), (2)
,

ext

tV t L V t L S V I t

V C


    


 
  

Where  

 
1 : ,

(., ) ( , (., ))

L C F

J r r r dr  





  
  

Is the linear continuous operator satisfying 

2 21 ( , )
.p pL R

L J 
  Notice that most of the 

papers on this subject assume   infinite, hence 

requiring .m      

 

Proposition 1.0  If the following assumptions are 
satisfied. 

1. 
2 2( , ),p pJ L R     

2. The external current 
0 ( , ),extI C R F   

3. 
2

0 2( , ),sup .p p

mC R  

 
     

Then for any ,C  there exists a unique solution 

1 0([0, ), ) ([ , , )mV C F C F      to (3) 

Notice that this result gives existence on ,R  finite-

time explosion is impossible for this delayed 

differential equation. Nevertheless, a particular 

solution could grow indefinitely, we now prove that 

this cannot happen. 

 

B. Boundedness of Solutions 

 A valid model of neural networks should 

only feature bounded packet node potentials.  
 

Theorem 1.0 All the trajectories are ultimately 

bounded by the same constant R  if 

max ( ) .ext

t R F
I I t
    

Proof :Let us defined :f R C R   as 

2

0 1

1
( , ) (0) ( ) ( ), ( )

2

def
ext F

t t t F

d V
f t V L V L S V I t V t

dt
    

 We note 1,...min i p il l   

2
( , ) ( ) ( ) ( )t F F F

f t V l V t p J I V t    

 Thus,  if 

2.
( ) 2 , ( , ) 0

2

def def
F

tF

p J I lR
V t R f t V

l


 
     

  Let us show that the open route of F  of 

center 0 and radius , ,RR B  is stable under the 

dynamics of equation. We know that ( )V t  is 

defined for all 0t s  and that 0f   on ,RB  the 

boundary of RB . We consider three cases for the 

initial condition 0.V If 
0 C

V R  and set 

sup{ | [0, ], ( ) }.RT t s t V s B     Suppose 

that ,T R  then ( )V T  is defined and belongs to 

,RB  the closure of ,RB  because  
RB is closed, in 

effect to ,RB  we also have 

2
| ( , ) 0t T TF

d
V f T V

dt
      because 

( ) .RV T B  Thus we deduce that for 0   and 

small enough, ( ) RV T B   which contradicts 

the definition of T. Thus T R  and 
RB is stable. 

 Because f<0 on , (0)R RB V B   

implies that 0, ( ) Rt V t B   . Finally we 

consider the case (0) RV CB . Suppose that   

0, ( ) ,Rt V t B    then 

2
0, 2 ,

F

d
t V

dt
     thus ( )

F
V t  is 

monotonically decreasing and reaches the value of R 

in finite time when ( )V t  reaches .RB  This 

contradicts our assumption.  Thus  

0 | ( ) .RT V T B     

 

Proposition 1.1 : Let s  and t   be measured simple 

functions on .X  for ,E M  define 

 

( ) (1)
E

E s d  
  

Then 


 is a measure on M .  

( ) (2)
X X X

s t d s d td      
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Proof : If s  and if 1 2, ,...E E  are disjoint members 

of M whose union is ,E  the countable additivity of 

  shows that  

1 1 1

1 1 1

( ) ( ) ( )

( ) ( )

n n

i i i i r

i i r

n

i i r r

r i r

E A E A E

A E E

    

  



  

 

  

   

  

  

 

  

Also,
( ) 0,  

 so that 


 is not identically . 

Next, let  s  be as before, let 1,..., m   be the 

distinct values of  t,and let { : ( ) }j jB x t x    If 

,ij i jE A B   the

( ) ( ) ( )
ij

i j ij
E

s t d E        

and ( ) ( )
ij ij

i ij j ij
E E

sd td E E           

Thus (2) holds with ijE  in place of X . Since  X is 

the disjoint union of the sets 

(1 ,1 ),ijE i n j m     the first half of our 

proposition implies that (2) holds. 

 

 

Theorem 1.1: If K  is a compact set in the plane 

whose complement is connected, if f  is a 

continuous complex function on K  which is 

holomorphic in the interior of , and if 0,   then 

there exists a polynomial P  such that 

( ) ( )f z P z    for all z K .  If the interior of 

K is empty, then part of the hypothesis is vacuously 

satisfied, and the conclusion holds for every 

( )f C K . Note that  K need to be connected. 

Proof: By Tietze‘s theorem, f  can be extended to a 

continuous function in the plane, with compact 

support. We fix one such extension and denote it 

again by f . For any 0,   let ( )   be the 

supremum of the numbers 
2 1( ) ( )f z f z  Where 

1z  and 2z  are subject to the condition 

2 1z z   . Since f  is uniformly continous, we 

have 
0

lim ( ) 0 (1)


 


  From now on, 

  will be fixed. We shall prove that there is a 

polynomial P  such that  

 

( ) ( ) 10,000 ( ) ( ) (2)f z P z z K   

  

By (1),   this proves the theorem. Our first objective 

is the construction of a function 
' 2( ),cC R  such 

that for all z   

( ) ( ) ( ), (3)

2 ( )
( )( ) , (4)

f z z

z

 

 



 

 
  

And 

1 ( )( )
( ) ( ), (5)

X

z d d i
z


    

 


    



  Where X  is the set of all points in the 

support of   whose distance from the complement 

of K  does not  . (Thus  X contains no point 

which is ―far within‖ K .) We construct  as the 

convolution of f  with a smoothing function A. Put 

( ) 0a r   if ,r  put  

 
2

2

2 2

3
( ) (1 ) (0 ), (6)

r
a r r 

 
   

  
And define 

( ) ( ) (7)A z a z
  

For all complex z . It is clear that 
' 2( )cA C R . We 

claim that  

2

3

1, (8)

0, (9)

24 2
, (10)

15

sR

R

R

A

A

A
 



 

  







    

 The constants are so adjusted in (6) that (8) 

holds.  (Compute the integral in polar coordinates), 

(9) holds simply because A  has compact support. 

To compute (10), express A  in polar coordinates, 

and note that 0,A


 


  

 

' ,A a
r

  
  

Now define 

2 2

( ) ( ) ( ) ( ) (11)

R R

z f z Ad d A z f d d           

  

Since f  and A  have compact support, so does  . 

Since  

 

2

( ) ( )

[ ( ) ( )] ( ) (12)

R

z f z

f z f z A d d   

 

  
 

And ( ) 0A    if ,    (3) follows from (8). 

The difference quotients of A  converge boundedly 
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to the corresponding partial derivatives, since 
' 2( )cA C R . Hence the last expression in (11) may 

be differentiated under the integral sign, and we 

obtain 

2

2

2

( )( ) ( )( ) ( )

( )( )( )

[ ( ) ( )]( )( ) (13)

R

R

R

z A z f d d

f z A d d

f z f z A d d

   

   

   

   

  

   







   The last equality depends on (9). Now (10) 

and (13) give (4). If we write (13) with x  and 

y  in place of ,  we see that   has continuous 

partial derivatives, if we can show that 0   in 

,G  where G  is the set of all z K  whose distance 

from the complement of K  exceeds .  We shall 

do this by showing that  

 ( ) ( ) ( ); (14)z f z z G    

Note that 0f   in G , since f  is holomorphic 

there. Now if ,z G  then z   is in the interior of 

K  for all   with .   The mean value 

property for harmonic functions therefore gives, by 

the first equation in (11), 

2

2

0 0

0

( ) ( ) ( )

2 ( ) ( ) ( ) ( ) (15)

i

R

z a r rdr f z re d

f z a r rdr f z A f z

 








  

  

 

 

  For all z G  , we have now proved (3), 

(4), and (5) The definition of X  shows that X is 

compact and that X  can be covered by finitely 

many open discs 1,..., ,nD D  of radius 2 ,  whose 

centers are not in .K  Since 
2S K  is connected, 

the center of each jD  can be joined to   by a 

polygonal path in 
2S K . It follows that each jD

contains a compact connected set ,jE  of diameter 

at least 2 ,  so that 
2

jS E  is connected and so 

that .jK E     with 2r  . There are 

functions 
2( )j jg H S E   and constants jb  so 

that the inequalities. 

 

2

2

50
( , ) , (16)

1 4,000
( , ) (17)

j

j

Q z

Q z
z z







 



 
 

   

Hold for jz E  and ,jD   if  

2( , ) ( ) ( ) ( ) (18)j j j jQ z g z b g z      

Let   be the complement of 1 ... .nE E   Then 

 is an open set which contains .K  Put 

1 1X X D   and 

1 1( ) ( ... ),j j jX X D X X       for 

2 ,j n    

Define  

( , ) ( , ) ( , ) (19)j jR z Q z X z    

  

And 

1
( ) ( )( ) ( , ) (20)

( )

X

F z R z d d

z

   




 





  

Since,  

1

1
( ) ( )( ) ( , ) , (21)

i

j

j X

F z Q z d d   


  

 (18) shows that F  is a finite linear combination of 

the functions jg  and 
2

jg . Hence ( ).F H 
 
By 

(20), (4), and (5) we have  

2 ( )
( ) ( ) | ( , )

1
| ( ) (22)

X

F z z R z

d d z
z

 




  


 

 



  

Observe that the inequalities (16) and (17) are valid 

with R  in place of jQ  if X   and .z  

Now fix  .z   , put ,iz e     and estimate 

the integrand in (22) by (16) if 4 ,   by (17) if 

4 .    The integral in (22) is then seen to be less 

than the sum of 

4

0

50 1
2 808 (23)d



   
 

 
  

 
   

And  
2

24

4,000
2 2,000 . (24)d




   





   

Hence (22) yields 

( ) ( ) 6,000 ( ) ( ) (25)F z z z    

 Since ( ), ,F H K    and 
2S K  is 

connected, Runge‘s theorem shows that F  can be 

uniformly approximated on K  by polynomials. 

Hence (3) and (25) show that (2) can be satisfied. 

This completes the proof. 

 



 Akash K Singh / International Journal of Engineering Research and Applications  

(IJERA)                ISSN: 2248-9622               www.ijera.com  

Vol. 2, Issue 6, November- December 2012, pp. 

133 | P a g e  

 

Lemma 1.0 : Suppose 
' 2( ),cf C R  the space of all 

continuously differentiable functions in the plane, 

with compact support. Put  

1
(1)

2
i

x y

  
   

  
  

Then the following ―Cauchy formula‖ holds: 

2

1 ( )( )
( )

( ) (2)

R

f
f z d d

z

i


 

 

  


 



 


  

Proof: This may be deduced from Green‘s theorem. 

However, here is a simple direct proof: 

Put ( , ) ( ), 0,ir f z re r      real 

 If ,iz re     the chain rule gives 

1
( )( ) ( , ) (3)

2

i i
f e r

r r

  


  
     

  

The right side of (2) is therefore equal to the limit, 

as 0,   of 

 

2

0

1
(4)

2

i
d dr

r r





 




   
  

  
 

 

 

 

 For each 0,r   is periodic in ,  with 

period 2 . The integral of /    is therefore 0, 

and (4) becomes 

2 2

0 0

1 1
( , ) (5)

2 2
d dr d

r

 




    

 

 
 

  
 As 0, ( , ) ( )f z      uniformly.  This 

gives (2)  

If X a   and  1,... nX k X X  , then 

X X X a      , and so A  satisfies the 

condition ( ) . Conversely, 

,

( )( ) ( ),
nA

c X d X c d X finite sums   

   

  



 

  


 and so if A  satisfies ( ) , then the subspace 

generated by the monomials ,X a   , is an 

ideal. The proposition gives a classification of the 

monomial ideals in  1,... nk X X : they are in one 

to one correspondence with the subsets A  of 
n  

satisfying ( ) . For example, the monomial ideals in 

 k X  are exactly the ideals ( ), 1nX n  , and the 

zero ideal (corresponding to the empty set A ). We 

write |X A   for the ideal corresponding to 

A  (subspace generated by the ,X a   ). 

LEMMA 1.1.  Let S  be a subset of 
n . The the 

ideal a  generated by ,X S    is the monomial 

ideal corresponding to   

 | ,
df

n nA some S           

Thus, a monomial is in a  if and only if it is 

divisible by one of the , |X S    

PROOF.   Clearly A  satisfies   , and 

|a X A   . Conversely, if A  , then 

n    for some S , and 

X X X a     . The last statement follows 

from the fact that | nX X      . Let 

nA   satisfy   . From the geometry of  A , it 

is clear that there is a finite set of elements 

 1,... sS     of A such that  

 2| ,n

i iA some S          

(The 'i s  are the corners of A ) Moreover, 

|
df

a X A   is generated by the monomials 

,i

iX S
   . 

 

DEFINITION 1.0.   For a nonzero ideal a  in 

 1 ,..., nk X X , we let ( ( ))LT a  be the ideal 

generated by  

 ( ) |LT f f a   

 

LEMMA 1.2   Let a  be a nonzero ideal in  

 1 ,..., nk X X ; then ( ( ))LT a is a monomial 

ideal, and it equals 1( ( ),..., ( ))nLT g LT g  for 

some 1,..., ng g a . 

PROOF.   Since  ( ( ))LT a  can also be described 

as the ideal generated by the leading monomials 

(rather than the leading terms) of elements of a . 

 

THEOREM 1.2.  Every ideal a  in 

 1 ,..., nk X X is finitely generated; more 

precisely, 1( ,..., )sa g g  where 1,..., sg g are any 

elements of a  whose leading terms generate 

( )LT a   

PROOF.   Let f a . On applying the division 

algorithm, we find 

 1 1 1... , , ,...,s s i nf a g a g r a r k X X    
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 , where either 0r   or no monomial occurring in 

it is divisible by any ( )iLT g . But 

i i
r f a g a   , and therefore 

1( ) ( ) ( ( ),..., ( ))sLT r LT a LT g LT g  , 

implies that every monomial occurring in r  is 

divisible by one in ( )iLT g . Thus 0r  , and 

1( ,..., )sg g g . 

 

DEFINITION 1.1.   A finite subset 

 1,| ..., sS g g  of an ideal a  is a standard (

..

( )Gr obner bases for a  if 

1( ( ),..., ( )) ( )sLT g LT g LT a . In other words, 

S is a standard basis if the leading term of every 

element of a is divisible by at least one of the 

leading terms of the ig . 

 

THEOREM 1.3  The ring 1[ ,..., ]nk X X  is 

Noetherian i.e., every ideal is finitely generated. 

 

PROOF. For  1,n   [ ]k X  is a principal ideal 

domain, which means that every ideal is generated 

by single element. We shall prove the theorem by 

induction on n . Note that the obvious map 

1 1 1[ ,... ][ ] [ ,... ]n n nk X X X k X X   is an 

isomorphism – this simply says that every 

polynomial f  in n  variables 1,... nX X  can be 

expressed uniquely as a polynomial in nX  with 

coefficients in 1[ ,..., ]nk X X : 

1 0 1 1 1 1( ,... ) ( ,... ) ... ( ,... )r

n n n r nf X X a X X X a X X   

  
Thus the next lemma will complete the proof 

 

LEMMA 1.3.  If A  is Noetherian, then so also is 

[ ]A X   

PROOF.          For a polynomial 

 
1

0 1 0( ) ... , , 0,r r

r if X a X a X a a A a     

 r  is called the degree of f , and 0a  is its leading 

coefficient. We call 0 the leading coefficient of the 

polynomial 0.  Let a  be an ideal in [ ]A X . The 

leading coefficients of the polynomials in a  form 

an ideal 
'a  in A ,  and since A  is Noetherian, 

'a

will be finitely generated. Let 1,..., mg g  be 

elements of a  whose leading coefficients generate 
'a , and let r be the maximum degree of ig . Now 

let ,f a  and suppose f  has degree s r , say, 

...sf aX   Then 
'a a  , and so we can write 

, ,i ii

i i

a b a b A

a leading coefficient of g

 




  

Now 

, deg( ),
is r

i i i if b g X r g


  has degree 

deg( )f  . By continuing in this way, we find that 

1mod( ,... )t mf f g g  With tf  a 

polynomial of degree t r . For each d r , let 

da  be the subset of A  consisting of 0 and the 

leading coefficients of all polynomials in a  of 

degree ;d  it is again an ideal in  A . Let 

,1 ,,...,
dd d mg g  be polynomials of degree d  whose 

leading coefficients generate da . Then the same 

argument as above shows that any polynomial df  in 

a  of degree d  can be written 

1 ,1 ,mod( ,... )
dd d d d mf f g g  With 1df   

of degree 1d  . On applying this remark 

repeatedly we find that 

1 01,1 1, 0,1 0,( ,... ,... ,... )
rt r r m mf g g g g
   Hence 

     

1 01 1,1 1, 0,1 0,( ,... ,... ,..., ,..., )
rt m r r m mf g g g g g g
 

 

 and so the polynomials 
01 0,,..., mg g  generate a   

 

Definition 2 (RCPI). An instance of a role 

containment problem (RCPI) is given by a triple 

hP,R,X.u w A.ri. An RCPI is said to be satisfied if 

and only if [[X.u]]P0 _ [[A.r]]P0 for each P0 such 

that P _ 7!R P0. In this case we also say that P 

satisfies X.u w A.r under R. 

III. COMPLEXITY REDUCTION 
 This section describes several reductions 

that transform one RCPI into another that is typically 

less expensive to evaluate. Our findings in Section 5 

indicate that, when using our model checking 

technique and our platform configuation, these 
reductions often make the difference between being 

unable to evaluate an RCPI and being able to do so. 

We conjecture that they may also reduce the cost of 

applying other approaches to solve RCPI problems, 

such as one based one on the proof method of Sistla 

[20, 21]. 

 One of the great successes of category 

theory in computer science has been the 

development of a ―unified theory‖ of the 

constructions underlying denotational semantics. In 

the untyped  -calculus,  any term may appear in 
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the function position of an application. This means 

that a model D of the  -calculus must have the 

property that given a term t  whose interpretation is 

,d D  Also, the interpretation of a functional 

abstraction like x . x  is most conveniently defined 

as a function from Dto D  , which must then be 

regarded as an element of D. Let 

 : D D D    be the function that picks out 

elements of D to  represent elements of  D D  

and  : D D D    be the function that maps 

elements of D to functions of D.  Since ( )f  is 

intended to represent the function f  as an element 

of D, it makes sense to require that ( ( )) ,f f    

that is, 
 D D

o id 


    Furthermore, we often 

want to view every element of D as representing 

some function from D to D and require that 

elements representing the same function be equal – 

that is   

( ( ))

D

d d

or

o id

 

 





  

 The latter condition is called 

extensionality. These conditions together imply that 

and   are inverses--- that is, D is isomorphic to 

the space of functions from D to D  that can be the 
interpretations of functional abstractions: 

 D D D   .Let us suppose we are working 

with the untyped calculus  , we need a 

solution ot the equation  ,D A D D    

where A is some predetermined domain containing 

interpretations for elements of C.  Each element of 

D corresponds to either an element of A or an 

element of  ,D D  with a tag. This equation 

can be solved by finding least fixed points of the 

function  ( )F X A X X    from domains to 

domains --- that is, finding domains X  such that 

 ,X A X X    and such that for any 

domain Y also satisfying this equation, there is an 

embedding of X to Y  --- a pair of maps 

R

f

f

X Y   

Such that   
R

X

R

Y

f o f id

f o f id




  

 Where f g  means that 

f approximates g  in some ordering representing 

their information content. The key shift of 
perspective from the domain-theoretic to the more 

general category-theoretic approach lies in 

considering F not as a function on domains, but as a 

functor on a category of domains. Instead of a least 

fixed point of the function, F. 

 

Definition 1.3: Let K be a category and 

:F K K  as a functor. A fixed point of F is a 

pair (A,a), where A is a K-object and 

: ( )a F A A  is an isomorphism. A prefixed 

point of F is a pair (A,a), where A is a K-object and 

a is any arrow from F(A) to A 

Definition 1.4 : An chain  in a category K  is a 

diagram of the following form: 

1 2

1 2 .....
of f f

oD D D       

Recall that a cocone   of an chain    is a K-

object X and a collection of K –arrows 

 : | 0i iD X i    such that 1i i io f    

for all 0i  . We sometimes write : X   as 

a reminder of the arrangement of ' s  components 

Similarly, a colimit : X  is a cocone with 

the property that if 
': X   is also a cocone 

then there exists a unique mediating arrow 
':k X X  such that for all 0,, i ii v k o  . 

Colimits of chains  are sometimes referred to 

as limco its . Dually, an 
op chain   in K is 

a diagram of the following form: 
1 2

1 2 .....
of f f

oD D D    
 
A cone 

: X   of an 
op chain    is a K-object 

X and a collection of K-arrows  : | 0i iD i   

such that for all 10, i i ii f o    . An  
op -

limit of an 
op chain     is a cone : X   

with the property that if 
': X  is also a cone, 

then there exists a unique mediating arrow 
':k X X  such that for all 0, i ii o k    . 

We write k  (or just  ) for the distinguish initial 

object of K, when it has one, and A  for the 

unique arrow from   to each K-object A. It is also 

convenient to write 
1 2

1 2 .....
f f

D D    to 

denote all of   except oD  and 0f . By analogy, 
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 is  | 1i i  . For the images of   and   

under F we write  

1 2( ) ( ) ( )

1 2( ) ( ) ( ) ( ) .....
oF f F f F f

oF F D F D F D      

and  ( ) ( ) | 0iF F i     

We write 
iF  for the i-fold iterated composition of 

F – that is, 
1 2( ) , ( ) ( ), ( ) ( ( ))oF f f F f F f F f F F f  

 ,etc. With these definitions we can state that every 

monitonic function on a complete lattice has a least 

fixed point: 
 

Lemma 1.4. Let K  be a category with initial object 

  and let :F K K  be a functor. Define the 

chain   by 
2

! ( ) (! ( )) (! ( ))
2

( ) ( ) .........
F F F F F

F F
     

        

If both : D 
 
and ( ) : ( ) ( )F F F D  

are colimits, then (D,d) is an intial F-algebra, where

: ( )d F D D
 
 is the mediating arrow from 

( )F 
 
 to the cocone 



 
 

 

Theorem 1.4 Let a DAG G given in which 

each node is a random variable, and let a discrete 

conditional probability distribution of each node 

given values of its parents in G be specified. Then 
the product of these conditional distributions yields 

a joint probability distribution P of the variables, 

and (G,P) satisfies the Markov condition. 

 

Proof. Order the nodes according to an ancestral 

ordering. Let 1 2, ,........ nX X X be the resultant 

ordering. Next define.  

1 2 1 1

2 2 1 1

( , ,.... ) ( | ) ( | )...

.. ( | ) ( | ),

n n n n nP x x x P x pa P x Pa

P x pa P x pa

 
 

 Where iPA is the set of parents of iX of in 

G and ( | )i iP x pa is the specified conditional 

probability distribution. First we show this does 

indeed yield a joint probability distribution. Clearly, 

1 20 ( , ,... ) 1nP x x x   for all values of the 

variables. Therefore, to show we have a joint 

distribution, as the variables range through all their 

possible values, is equal to one. To that end, 

Specified conditional distributions are the 

conditional distributions they notationally represent 
in the joint distribution. Finally, we show the 

Markov condition is satisfied. To do this, we need 

show for 1 k n   that  

whenever 

( ) 0, ( | ) 0

( | ) 0

( | , ) ( | ),

k k k

k k

k k k k k

P pa if P nd pa

and P x pa

then P x nd pa P x pa

 




 

 Where kND is the set of nondescendents 

of kX of in G. Since k kPA ND , we need only 

show ( | ) ( | )k k k kP x nd P x pa . First for a 

given k , order the nodes so that all and only 

nondescendents of kX precede kX in the ordering. 

Note that this ordering depends on k , whereas the 

ordering in the first part of the proof does not. 

Clearly then 

 

 

 

1 2 1

1 2

, ,....

, ,....

k k

k k k n

ND X X X

Let

D X X X



 





 

follows 
kd    

 We define the 
thm cyclotomic field to be 

the field   / ( ( ))mQ x x
 
Where ( )m x is the 

thm cyclotomic polynomial.   / ( ( ))mQ x x  

( )m x  has degree ( )m over Q since ( )m x

has degree ( )m . The roots of ( )m x  are just 

the primitive 
thm roots of unity, so the complex 

embeddings of   / ( ( ))mQ x x are simply the 

( )m maps  

 : / ( ( )) ,

1 , ( , ) 1,

( ) ,

k m

k

k m

Q x x C

k m k m where

x



 



 





  

m being our fixed choice of primitive 
thm root of 

unity. Note that ( )k

m mQ  for every ;k it 

follows that ( ) ( )k

m mQ Q  for all k relatively 

prime to m . In particular, the images of the i

coincide, so   / ( ( ))mQ x x is Galois over Q . 

This means that we can write ( )mQ  for 

  / ( ( ))mQ x x without much fear of ambiguity; 

we will do so from now on, the identification being 

.m x  One advantage of this is that one can 

easily talk about cyclotomic fields being extensions 

of one another,or intersections or compositums; all 

of these things take place considering them as 
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subfield of .C  We now investigate some basic 

properties of cyclotomic fields. The first issue is 

whether or not they are all distinct; to determine 

this, we need to know which roots of unity lie in 

( )mQ  .Note, for example, that if m is odd, then 

m is a 2 thm root of unity. We will show that this 

is the only way in which one can obtain any non-
thm roots of unity. 

 

LEMMA 1.5   If m divides n , then ( )mQ   is 

contained in ( )nQ   

PROOF. Since ,
n

m
m  we have ( ),m nQ 

so the result is clear 
 

LEMMA 1.6   If m and n are relatively prime, then  

  ( , ) ( )m n nmQ Q    

and 

           ( ) ( )m nQ Q Q    

(Recall the ( , )m nQ    is the compositum of 

( ) ( ) )m nQ and Q   

 

PROOF. One checks easily that m n  is a primitive 

thmn root of unity, so that  

( ) ( , )mn m nQ Q    

    ( , ) : ( ) : ( :

( ) ( ) ( );

m n m nQ Q Q Q Q Q

m n mn

   

  



 
 

Since  ( ) : ( );mnQ Q mn  this implies that 

( , ) ( )m n nmQ Q  
 
We know that ( , )m nQ  

has degree ( )mn
 
over  Q , so we must have 

   ( , ) : ( ) ( )m n mQ Q n     

and 

 ( , ) : ( ) ( )m n mQ Q m     

 

 ( ) : ( ) ( ) ( )m m nQ Q Q m      

And thus that ( ) ( )m nQ Q Q    

 

PROPOSITION 1.2 For any m and n  

 

 ,
( , ) ( )m n m n

Q Q    

And  

( , )( ) ( ) ( );m n m nQ Q Q     

here  ,m n and  ,m n denote the least common 

multiple and the greatest common divisor of m and 

,n respectively. 

 

PROOF.    Write 

1 1

1 1...... ....k ke fe f

k km p p and p p where the ip are 

distinct primes. (We allow i ie or f to be zero) 

1 2
1 2

1 2
1 2

1 1
1 12

1 1
1 1

max( ) max( )1, ,1
1 1

( ) ( ) ( )... ( )

( ) ( ) ( )... ( )

( , ) ( )........ ( ) ( )... ( )

( ) ( )... ( ) ( )

( )....... (

e e ek
k

f f fk
k

e e f fk k
k

e f e fk k
k k

e ef k fk

m p p p

n p p p

m n p pp p

p p p p

p p

Q Q Q Q

and

Q Q Q Q

Thus

Q Q Q Q Q

Q Q Q Q

Q Q

   

   

     

   

 











 

max( ) max( )1, ,1
1 1........

,

)

( )

( );

e ef k fkp p

m n

Q

Q









 

 

An entirely similar computation shows that 

( , )( ) ( ) ( )m n m nQ Q Q   
 

 Mutual information measures the 

information transferred when ix  is sent and iy  is 

received, and is defined as 

2

( )

( , ) log (1)
( )

i

i
i i

i

x
P

y
I x y bits

P x
  

In a noise-free channel, each iy is uniquely 

connected to the corresponding ix  , and so they 

constitute an input –output pair ( , )i ix y  for which 

 2

1
( ) 1 ( , ) log

( )
i

i j
j i

x
P and I x y

y P x
  bits; 

that is, the transferred information is equal to the 

self-information that corresponds to the input ix
 
In 

a very noisy channel, the output iy and input ix

would be completely uncorrelated, and so 

( ) ( )i
i

j

x
P P x

y
  and also ( , ) 0;i jI x y  that is, 

there is no transference of information. In general, a 

given channel will operate between these two 

extremes. The mutual information is defined 

between the input and the output of a given channel. 
An average of the calculation of the mutual 

information for all input-output pairs of a given 

channel is the average mutual information: 
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2

. .

(

( , ) ( , ) ( , ) ( , ) log
( )

i

j

i j i j i j

i j i j i

x
P

y
I X Y P x y I x y P x y

P x

 
 

   
 
 

 

 bits per symbol . This calculation is done over the 

input and output alphabets. The average mutual 

information. The following expressions are useful 

for modifying the mutual information expression: 

( , ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

ji
i j j i

j i

j
j i

ii

i
i j

ji

yx
P x y P P y P P x

y x

y
P y P P x

x

x
P x P P y

y

 









 

Then 

.

2

.

2

.

2

.

2

2

( , ) ( , )

1
( , ) log

( )

1
( , ) log

( )

1
( , ) log

( )

1
( ) ( ) log

( )

1
( ) log ( )

( )

( , ) ( ) ( )

i j

i j

i j

i j i

i j
ii j

j
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i j i

i
j
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i

i i
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P x
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x

P
y
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x
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Where 

2,

1
( ) ( , ) log

( )
i ji j

i

j

XH P x y
Y x

P
y

  is 

usually called the equivocation. In a sense, the 

equivocation can be seen as the information lost in 

the noisy channel, and is a function of the backward 

conditional probability. The observation of an 

output symbol jy provides ( ) ( )XH X H
Y

  bits 

of information. This difference is the mutual 

information of the channel. Mutual Information: 

Properties Since 

( ) ( ) ( ) ( )ji
j i

j i

yx
P P y P P x

y x
  

The mutual information fits the condition 

( , ) ( , )I X Y I Y X  

And by interchanging input and output it is also true 

that 

( , ) ( ) ( )YI X Y H Y H
X

   

Where 

2

1
( ) ( ) log

( )
j

j j

H Y P y
P y

  

 This last entropy is usually called the noise 

entropy. Thus, the information transferred through 

the channel is the difference between the output 

entropy and the noise entropy. Alternatively, it can 

be said that the channel mutual information is the 

difference between the number of bits needed for 
determining a given input symbol before knowing 

the corresponding output symbol, and the number of 

bits needed for determining a given input symbol 

after knowing the corresponding output symbol 

( , ) ( ) ( )XI X Y H X H
Y

   

As the channel mutual information expression is a 

difference between two quantities, it seems that this 

parameter can adopt negative values. However, and 

is spite of the fact that for some , ( / )j jy H X y  

can be larger than ( )H X , this is not possible for 

the average value calculated over all the outputs: 

2 2

, ,

( )
( , )

( , ) log ( , ) log
( ) ( ) ( )

i

j i j

i j i j

i j i ji i j

x
P

y P x y
P x y P x y

P x P x P y
 

 

Then 

,

( ) ( )
( , ) ( , ) 0

( , )

i j

i j

i j i j

P x P y
I X Y P x y

P x y
    

Because this expression is of the form 

2

1

log ( ) 0
M

i
i

i i

Q
P

P

  

The above expression can be applied due to the 

factor ( ) ( ),i jP x P y which is the product of two 

probabilities, so that it behaves as the quantity iQ , 

which in this expression is a dummy variable that 

fits the condition 1ii
Q  . It can be concluded 

that the average mutual information is a non-

negative number. It can also be equal to zero, when 

the input and the output are independent of each 
other. A related entropy called the joint entropy is 

defined as 

2

,

2

,

2

,

1
( , ) ( , ) log

( , )

( ) ( )
( , ) log

( , )

1
( , ) log

( ) ( )

i j

i j i j

i j

i j

i j i j

i j

i j i j

H X Y P x y
P x y

P x P y
P x y

P x y

P x y
P x P y
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Theorem 1.5: Entropies of the binary erasure 

channel (BEC) The BEC is defined with an alphabet 

of two inputs and three outputs, with symbol 

probabilities.  

1 2( ) ( ) 1 ,P x and P x    and transition 

probabilities 

 
3 2

2 1

3

1

1

2

3

2

( ) 1 ( ) 0,

( ) 0

( )

( ) 1

y y
P p and P

x x

y
and P

x

y
and P p

x

y
and P p

x

  





 

 

 

Lemma 1.7. Given an arbitrary restricted time-

discrete, amplitude-continuous channel whose 

restrictions are determined by sets nF and whose 

density functions exhibit no dependence on the state

s , let n be a fixed positive integer, and ( )p x an 

arbitrary probability density function on Euclidean 

n-space. ( | )p y x for the density 

1 1( ,..., | ,... )n n np y y x x and nF for F
. 

For any 

real number a, let 

( | )
( , ) : log (1)

( )

p y x
A x y a

p y

 
  
 

 

Then for each positive integer u , there is a code 

( , , )u n  such that 

   ( , ) (2)aue P X Y A P X F     

 

Where 

 

 

( , ) ... ( , ) , ( , ) ( ) ( | )

... ( )

A

F

P X Y A p x y dxdy p x y p x p y x

and

P X F p x dx

  

 

 

 
 

Proof: A sequence 
(1)x F such that 

 
 

1

(1)| 1

: ( , ) ;

x

x

P Y A X x

where A y x y A





   


 

Choose the decoding set 1B to be (1)x
A . Having 

chosen 
(1) ( 1),........, kx x 

and 1 1,..., kB B  , select 

kx F such that 

( )

1
( )

1

| 1 ;k

k
k

ix
i

P Y A B X x 




 
     

 


 

 

Set ( )

1

1
k

k

k ix i
B A B




  , If the process does not 

terminate in a finite number of steps, then the 

sequences 
( )ix and decoding sets 

, 1, 2,..., ,iB i u form the desired code. Thus 

assume that the process terminates after t  steps. 

(Conceivably 0t  ). We will show t u  by 

showing that  

   ( , )ate P X Y A P X F      . We 

proceed as follows.  

Let 

 

1

( , )

. ( 0, ).

( , ) ( , )

( ) ( | )

( ) ( | ) ( )

x

x

t

jj

x y A

x y A

x y B A x

B B If t take B Then

P X Y A p x y dx dy

p x p y x dy dx

p x p y x dy dx p x








 

  

 



 



 

  



 
 

 

IV. EXPERIMENTAL DESIGN 
 

We evaluate the performance of our scheme and 

study various ―what-if‖ scenarios through detailed 
simulation experiments. We compare our scheme 

against existing alternatives of using a least recently 

used (LRU) or a least frequently used (LFU) cache 

replacement strategy. 

 

A. Algorithms 

Ideals.    Let A be a ring. Recall that an ideal a in A 

is a subset such that a is subgroup of A regarded as a 

group under addition; 

 
,a a r A ra A   

   
The ideal generated by a subset S of A is the 

intersection of all ideals A containing a ----- it is 

easy to verify that this is in fact an ideal, and that it 

consist of all finite sums of the form i i
rs  with 

,i ir A s S  . When  1,....., mS s s , we shall 

write 1( ,....., )ms s for the ideal it generates. 

Let a and b be ideals in A. The set 

 | ,a b a a b b    is an ideal, denoted by 

a b . The ideal generated by  

 | ,ab a a b b  is denoted by ab . Note that 

ab a b  . Clearly ab consists of all finite sums 

i i
a b  with ia a  and ib b , and if 
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1( ,..., )ma a a  and 1( ,..., )nb b b , then 

1 1( ,..., ,..., )i j m nab a b a b a b .Let a  be an ideal 

of A. The set of cosets of a in A forms a ring /A a
, and a a a  is a homomorphism 

: /A A a  . The map 
1( )b b   is a one to 

one correspondence between the ideals of /A a  

and the ideals of A  containing a An ideal p  if 

prime if p A  and ab p a p    or b p . 

Thus p  is prime if and only if /A p  is nonzero 

and has the property that  

0, 0 0,ab b a      i.e., /A p is an 

integral domain. An ideal m  is maximal if |m A  

and there does not exist an ideal n  contained 

strictly between m and A . Thus m is maximal if 

and only if /A m  has no proper nonzero ideals, and 

so is a field. Note that m  maximal   m prime. 

The ideals of A B  are all of the form a b , with 

a  and b  ideals in A  and B . To see this, note that 

if c  is an ideal in  A B  and ( , )a b c , then 

( ,0) ( , )(1,0)a a b c   and 

(0, ) ( , )(0,1)b a b c  . This shows that 

c a b   with  

 | ( , )a a a b c some b b  
  

and  

  
 | ( , )b b a b c some a a  

 
 Let A  be a ring. An A -algebra is a ring 

B  together with a homomorphism :Bi A B . A 

homomorphism of A -algebra B C  is a 

homomorphism of rings : B C   such that 

( ( )) ( )B Ci a i a   for all . An  A -algebra 

B is said to be finitely generated ( or of finite-type 

over A) if there exist elements 1,..., nx x B  such 

that every element of B can be expressed as a 

polynomial in the ix  with coefficients in ( )i A , i.e., 

such that the homomorphism  1,..., nA X X B  

sending iX  to  ix is surjective.  A ring 

homomorphism A B  is finite, and B  is finitely 

generated as an A-module. Let k  be a field, and let 

A be a k -algebra. If 1 0  in A , then the map 

k A  is injective, we can identify k with its 

image, i.e., we can regard k as a subring of A  . If 

1=0 in a ring R, the R is the zero ring, i.e.,  0R 

. Polynomial rings.  Let  k  be a field. A monomial 

in 1,..., nX X  is an expression of the form 

1

1 ... ,naa

n jX X a N  . The total degree of the 

monomial is 
ia . We sometimes abbreviate it by 

1, ( ,..., ) n

nX a a   
. 

The elements of the 

polynomial ring  1,..., nk X X  are finite sums

1

1 1.... 1 ....... , ,n

n n

aa

a a n a a jc X X c k a  
   

With the obvious notions of equality, addition and 

multiplication. Thus the monomials from basis for  

 1,..., nk X X  as a k -vector space. The ring 

 1,..., nk X X is an integral domain, and the only 

units in it are the nonzero constant polynomials. A 

polynomial 1( ,..., )nf X X  is irreducible if it is 

nonconstant and has only the obvious factorizations, 

i.e., f gh g   or h  is constant. Division in 

 k X . The division algorithm allows us to divide a 

nonzero polynomial into another: let f  and g  be 

polynomials in  k X with 0;g   then there exist 

unique polynomials  ,q r k X  such that 

f qg r   with either 0r   or deg r  < deg g . 

Moreover, there is an algorithm for deciding 

whether ( )f g , namely, find r and check 

whether it is zero. Moreover, the Euclidean 

algorithm allows to pass from finite set of 

generators for an ideal in  k X to a single 

generator by successively replacing each pair of 

generators with their greatest common divisor. 

(Pure) lexicographic ordering (lex). Here 

monomials are ordered by lexicographic(dictionary) 

order. More precisely, let 1( ,... )na a   and 

1( ,... )nb b   be two elements of 
n ; then  

   and  X X  (lexicographic ordering) if, 

in the vector difference    , the left most 

nonzero entry is positive. For example,  

 
2 3 4 3 2 4 3 2;XY Y Z X Y Z X Y Z  . Note that 

this isn‘t quite how the dictionary would order them: 

it would put XXXYYZZZZ  after XXXYYZ . 

Graded reverse lexicographic order (grevlex). Here 

monomials are ordered by total degree, with ties 

broken by reverse lexicographic ordering. Thus, 

   if 
i ia b  , or 

i ia b   and in 

   the right most nonzero entry is negative. For 

example:  
4 4 7 5 5 4X Y Z X Y Z  (total degree greater) 

5 2 4 3 5 4 2,XY Z X YZ X YZ X YZ 
. 

 

a A
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Orderings on  1,... nk X X  . Fix an ordering on 

the monomials in  1,... nk X X . Then we can write 

an element f  of  1,... nk X X  in a canonical 

fashion, by re-ordering its elements in decreasing 

order. For example, we would write 
2 2 3 2 24 4 5 7f XY Z Z X X Z   

  
as 

3 2 2 2 25 7 4 4 ( )f X X Z XY Z Z lex    
  

or 
2 2 2 3 24 7 5 4 ( )f XY Z X Z X Z grevlex   

  

Let  1,..., na X k X X

   , in decreasing 

order: 

0 1

0 1 0 1 0..., ..., 0f a X X
 

         

  

Then we define. 

 The multidegree of 
f

 to be multdeg(
f

)= 

0 ;  

 The leading coefficient of 
f

to be LC(
f

)=
0

a ; 

 The leading monomial of  
f

to be LM(
f

) 

= 0X


; 

 The leading term of 
f

to be LT(
f

) = 

0

0
a X



   

 For the polynomial 
24 ...,f XY Z   the 

multidegree is (1,2,1), the leading coefficient is 4, 

the leading monomial is 
2XY Z , and the leading 

term is  
24XY Z . The division algorithm in 

 1,... nk X X . Fix a monomial ordering in 
2 . 

Suppose given a polynomial f  and an ordered set 

1( ,... )sg g  of polynomials; the division algorithm 

then constructs polynomials 1,... sa a  and r   such 

that 1 1 ... s sf a g a g r      Where either 

0r   or no monomial in r  is divisible by any of 

1( ),..., ( )sLT g LT g   Step 1: If 

1( ) | ( )LT g LT f , divide 1g  into f  to get 

 1 1 1 1

1

( )
, ,...,

( )
n

LT f
f a g h a k X X

LT g
   

If 1( ) | ( )LT g LT h , repeat the process until  

1 1 1f a g f    (different 1a ) with 1( )LT f  not 

divisible by 1( )LT g . Now divide 2g  into 1f , and 

so on, until 1 1 1... s sf a g a g r      With 

1( )LT r  not divisible by any 1( ),... ( )sLT g LT g   

Step 2: Rewrite 1 1 2( )r LT r r  , and repeat Step 

1 with 2r  for f : 

1 1 1 3... ( )s sf a g a g LT r r       (different 

'ia s  )   Monomial ideals. In general, an ideal a  

will contain a polynomial without containing the 

individual terms of the polynomial; for example, the 

ideal 
2 3( )a Y X   contains 

2 3Y X but not 

2Y  or 
3X . 

 

DEFINITION 1.5. An ideal a  is monomial if 

c X a X a 

     

 all   with 0c  .  

PROPOSITION 1.3. Let a be a monomial ideal, 

and let  |A X a  . Then A satisfies the 

condition , ( )nA           

And a  is the k -subspace of  1,..., nk X X  

generated by the ,X A   . Conversely, of A  is 

a subset of 
n  satisfying   , then the k-subspace  

a  of  1,..., nk X X  generated by  |X A 

is a monomial ideal. 

 

PROOF.  It is clear from its definition that a 

monomial ideal a  is the  k -subspace of 

 1,..., nk X X
  

generated by the set of monomials it contains. If 

X a 
 and 

 1,..., nX k X X 
 . 

   

If a permutation is chosen uniformly and at random 

from the !n  possible permutations in ,nS  then the 

counts 
( )n

jC  of cycles of length j  are dependent 

random variables. The joint distribution of 
( ) ( ) ( )

1( ,..., )n n n

nC C C  follows from Cauchy‘s 

formula, and is given by 

( )

1 1

1 1 1
[ ] ( , ) 1 ( ) , (1.1)

! !

j

nn
cn

j

j j j

P C c N n c jc n
n j c 

 
    

 
 

  

for 
nc  .  

 

Lemma1.7 For nonnegative integers 

1,...,

[ ]( )

11 1

,

1
( ) 1 (1.4)

j

j

n

m
n n n

mn

j j

jj j

m m

E C jm n
j  
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Proof.   This can be established directly by 

exploiting cancellation of the form 
[ ] !/ 1/ ( )!jm

j j j jc c c m     when ,j jc m  

which occurs between the ingredients in Cauchy‘s 

formula and the falling factorials in the moments. 

Write 
jm jm . Then, with the first sum 

indexed by 1( ,... ) n

nc c c    and the last sum 

indexed by  1( ,..., ) n

nd d d    via the 

correspondence ,j j jd c m   we have  

[ ] [ ]( ) ( )

1 1

[ ]

: 1 1

11 1

( ) [ ] ( )

( )
1

!

1 1
1

( )!

j j

j

j

j j

j j

n n
m mn n

j j

cj j

m
nn

j

j c
c c m for all j j j j

n nn

jm d
d jj j j

E C P C c c

c
jc n

j c

jd n m
j j d

 

  

 

 
  

 

 
  

 

 
   

 

 

  

  

  

 This last sum simplifies to the indicator 

1( ),m n  corresponding to the fact that if 

0,n m   then 0jd   for ,j n m   and a 

random permutation in n mS   must have some cycle 

structure 1( ,..., )n md d  . The moments of 
( )n

jC   

follow immediately as 

 ( ) [ ]( ) 1 (1.2)n r r

jE C j jr n    

We note for future reference that (1.4) can also be 

written in the form  

[ ] [ ]( )

11 1

( ) 1 , (1.3)j j

n n n
m mn

j j j

jj j

E C E Z jm n
 

     
      

    
 

  

 Where the jZ  are independent Poisson-

distribution random variables that satisfy 

( ) 1/jE Z j   

 

 The marginal distribution of cycle counts 

provides a formula for the joint distribution of the 

cycle counts ,n

jC  we find the distribution of 
n

jC  

using a combinatorial approach combined with the 

inclusion-exclusion formula. 

 

Lemma  1.8.   For 1 ,j n   

 
[ / ]

( )

0

[ ] ( 1) (1.1)
! !

k ln j k
n l

j

l

j j
P C k

k l

 



     

Proof.     Consider the set I  of all possible cycles of 

length ,j  formed with elements chosen from 

 1,2,... ,n  so that 
[ ]/j jI n . For each ,I   

consider the ―property‖ G  of having ;  that is,  

G is the set of permutations nS   such that   

is one of the cycles of .  We then have 

( )!,G n j   since the elements of  1,2,...,n  

not in   must be permuted among themselves. To 

use the inclusion-exclusion formula we need to 

calculate the term ,rS  which is the sum of the 

probabilities of the r -fold intersection of properties, 

summing over all sets of r distinct properties. There 

are two cases to consider. If the r properties are 

indexed by r cycles having no elements in common, 

then the intersection specifies how rj  elements are 

moved by the permutation, and there are 

( )!1( )n rj rj n   permutations in the 

intersection.  There are 
[ ] / ( !)rj rn j r  such 

intersections. For the other case, some two distinct 

properties name some element in common, so no 

permutation can have both these properties, and the 
r -fold intersection is empty. Thus 

[ ]

( )!1( )

1 1
1( )

! ! !

r

rj

r r

S n rj rj n

n
rj n

j r n j r

  

  
  

Finally, the inclusion-exclusion series for the 

number of permutations having exactly k  

properties is 

,

0

( 1)l

k l

l

k l
S

l




 
  

 
   

Which simplifies to (1.1) Returning to the original 

hat-check problem, we substitute j=1 in (1.1) to 

obtain the distribution of the number of fixed points 

of a random permutation. For 0,1,..., ,k n   

( )

1

0

1 1
[ ] ( 1) , (1.2)

! !

n k
n l

l

P C k
k l





     

and the moments of 
( )

1

nC  follow from (1.2) with 

1.j   In particular, for  2,n   the mean and 

variance of 
( )

1

nC are both equal to 1. The joint 

distribution of 
( ) ( )

1( ,..., )n n

bC C  for any 1 b n   

has an expression similar to (1.7); this too can be 

derived by inclusion-exclusion. For any 

1( ,..., ) b

bc c c    with ,im ic   

1

( ) ( )

1

...

01 1

[( ,..., ) ]

1 1 1 1
( 1) (1.3)

! !

i i

b

i

n n

b

c lb b
l l

l withi ii i
il n m

P C C c

i c i l

 

 

 



     
     

     


 

 The joint moments of the first b  counts 
( ) ( )

1 ,...,n n

bC C  can be obtained directly from (1.2) 

and (1.3) by setting 1 ... 0b nm m      
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The limit distribution of cycle counts 

It follows immediately from Lemma 1.2 that for 

each fixed ,j  as ,n  

( ) 1/[ ] , 0,1,2,...,
!

k
n j

j

j
P C k e k

k


     

So that 
( )n

jC converges in distribution to a random 

variable jZ  having a Poisson distribution with 

mean 1/ ;j  we use the notation 
( )n

j d jC Z  

where (1/ )j oZ P j   to describe this. Infact, the 

limit random variables are independent. 

 

Theorem 1.6   The process of cycle counts 

converges in distribution to a Poisson process of   

with intensity 
1j . That is, as ,n   

( ) ( )

1 2 1 2( , ,...) ( , ,...) (1.1)n n

dC C Z Z

  

Where the , 1, 2,...,jZ j   are independent 

Poisson-distributed random variables with  

1
( )jE Z

j
   

Proof.  To establish the converges in distribution 

one shows that for each fixed 1,b   as ,n   

 
( ) ( )

1 1[( ,..., ) ] [( ,..., ) ]n n

b bP C C c P Z Z c     

 

Error rates 

 The proof of Theorem says nothing about 

the rate of convergence. Elementary analysis can be 

used to estimate this rate when 1b  . Using 

properties of alternating series with decreasing 

terms, for 0,1,..., ,k n   

( )

1 1

1 1 1
( ) [ ] [ ]

! ( 1)! ( 2)!

1

!( 1)!

nP C k P Z k
k n k n k

k n k

    
   


 

  It follows that  
1 1

( )

1 1

0

2 2 1
[ ] [ ] (1.11)

( 1)! 2 ( 1)!

n nn
n

k

n
P C k P Z k

n n n

 




    

  


  

Since 
1

1

1 1 1
[ ] (1 ...) ,

( 1)! 2 ( 2)( 3) ( 1)!

e
P Z n

n n n n n



     
    

  We see from (1.11) that the total variation 

distance between the distribution 
( )

1( )nL C  of 
( )

1

nC  

and the distribution 1( )L Z  of 1Z
 

 

B. Infinite State Space Reduction 

 Any analysis technique that operates by 

exhaustively examining reachable states must 

address the fact that in our analysis problem the size 

of reachable policy states is unbounded, and hence 

the state space is infinite. In this section we present a 

subspace of bounded size that was previously 
identified [12] and that has the property that, given 

any query, any restriction rule, and any initial state, 

there exists a reachable state in which the query is 

violated if and only if there exists a reachable state 

within the bounded state space in which the query is 

violated. Given a policy state P, a restriction rule R, 

and a query Q = X.u w A.r, the state space that must 

be considered consists of all states that are reachable 

from P under R and that are composed of statements 

in P and in N, in which N is constructed as follows: 

N = {A.r −D | r 2 Names(P) ^ A,D 2 Principals(P) [ 

NewPrinc(P,Q)}, NewPrinc(P,Q) is a set of new 
principals of size 2K, K = |SigRoles(P,Q) |, and 

SigRoles(P,Q) is the set {X.u} [ {A.r1 | A.r −A.r1.r2 

2 P} [ {B1.r1,B2.r2 | A.r  − B1.r1 \ B2.r2 2 P}. It is 

shown by Li et al. [12] that this set of reachable 

states has the desired property. We consider the 

number of new principals used here to be 

conservative in the sense that any fewer number of 

principals does not guarantee this desired property. 

Establish the asymptotics of 
( )( )n

nA C     under 

conditions 0( )A  and 01( ),B  where 

 
'

( ) ( )

1 1

( ) 0 ,

i i

n n

n ij

i n r j r

A C C
    

  
 

and 
''( / ) 1 ( )g

i i idr r O i     as ,i   for 

some 
' 0.g    We start with the expression 

'

'
( ) 0

0

0

1

1

[ ( ) ]
[ ( )]

[ ( ) ]

1 (1 ) (1.1)

i i

n m
n

m

i

i n i
r j r

P T Z n
P A C

P T Z n

E
ir



 

  






 
  

 


  

  

'

0

1 1

1

1 '

1,2,7

[ ( ) ]

exp [log(1 ) ]

1 ( ( )) (1.2)

n

i

P T Z n

d
i d i d

n

O n n


 



 







 
   

 



   

and 

  

'

0

1 1

1

1

1,2,7

[ ( ) ]

exp [log(1 ) ]

1 ( ( )) (1.3)

n

i

P T Z n

d
i d i d

n

O n n
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 Where 
 
'

1,2,7
( )n  refers to the quantity 

derived from 
'Z . It thus follows that 

( ) (1 )[ ( )]n d

nP A C Kn    for a constant K , 

depending on Z  and the 
'

ir  and computable 

explicitly from (1.1) – (1.3), if Conditions 0( )A  and 

01( )B  are satisfied and if 
'

( )g

i O i    from 

some 
' 0,g   since, under these circumstances, 

both 
 

1 '

1,2,7
( )n n  and  

 
1

1,2,7
( )n n  tend to 

zero as .n   In particular, for polynomials and 

square free polynomials, the relative error in this 

asymptotic approximation is of order 
1n

 if 
' 1.g    

For 0 /8b n   and 0 ,n n  with 0n   

 7,7

( ( [1, ]), ( [1, ]))

( ( [1, ]), ( [1, ]))

( , ),

TV

TV

d L C b L Z b

d L C b L Z b

n b





 

  

Where 
 7,7

( , ) ( / )n b O b n   under Conditions 

0 1( ), ( )A D  and 11( )B
 
Since, by the Conditioning 

Relation, 

0 0( [1, ] | ( ) ) ( [1, ] | ( ) ),b bL C b T C l L Z b T Z l  
 

  

It follows by direct calculation that 

0 0

0

0

( ( [1, ]), ( [1, ]))

( ( ( )), ( ( )))

max [ ( ) ]

[ ( ) ]
1 (1.4)

[ ( ) ]

TV

TV b b

b
A

r A

bn

n

d L C b L Z b

d L T C L T Z

P T Z r

P T Z n r

P T Z n





 

  
 

 



 

  

Suppressing the argument Z  from now on, we thus 

obtain  

( ( [1, ]), ( [1, ]))TVd L C b L Z b
 

 

0

0 0

[ ]
[ ] 1

[ ]

bn
b

r n

P T n r
P T r

P T n 

  
   

 
  

[ /2]

0
0

/2 0 0

[ ]
[ ]

[ ]

n

b
b

r n r b

P T r
P T r

P T n 


  


   

0

0

[ ]( [ ] [ ]
n

b bn bn

s

P T s P T n s P T n r
 

 
       
 


[ /2]

0 0

/2 0

[ ] [ ]
n

b b

r n r

P T r P T r
 

      

 [ /2]

0

0 0

[ /2]

0 0

0 [ /2] 1

[ ] [ ]
[ ]

[ ]

[ ] [ ] [ ] / [ ]

n
bn bn

b

s n

n n

b bn n

s s n

P T n s P T n r
P T s

P T n

P T r P T s P T n s P T n



  

    
 



     



 

 The first sum is at most 
1

02 ;bn ET
the third is 

bound by 

 

0 0
/2

10.5(1)

( max [ ]) / [ ]

2 ( / 2, ) 3
,

[0,1]

b n
n s n

P T s P T n

n b n

n P





 
 


  

 

 

[ /2] [ /2]
2

0 010.8
0 0

10.8 0

3 1
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[0,1] 2
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r s
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n
n n P T r P T s r s
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n ET
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Hence we may take 

 

 

 

10.81

07,7

10.5(1)

6 ( )
( , ) 2 ( ) 1

[0,1]

6
( / 2, ) (1.5)

[0,1]

b

n
n b n ET Z P

P

n b
P
















  

  
  



  

 

Required order under Conditions 0 1( ), ( )A D  and 

11( ),B  if ( ) .S    If not, 
   10.8

n
 can be 

replaced by 
   10.11

n
in the above, which has the 

required order, without the restriction on the ir  

implied by ( )S   . Examining the Conditions  

0 1( ), ( )A D  and 11( ),B it is perhaps surprising to 

find that 11( )B  is required instead of just 01( );B  

that is, that we should need 1

2
( )

a

ill
l O i 


   

to hold for some 1 1a  . A first observation is that a 

similar problem arises with the rate of decay of 1i  

as well. For this reason, 1n  is replaced by 1n


. This 

makes it possible to replace condition 1( )A  by the 

weaker pair of conditions 0( )A and 1( )D in the 

eventual assumptions needed for    7,7
,n b  to be 

of order ( / );O b n   the decay rate requirement of 

order 
1i  

 is shifted from 1i  itself to its first 

difference. This is needed to obtain the right 

approximation error for the random mappings 

example. However, since all the classical 

applications make far more stringent assumptions 
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about the 1, 2,i l   than are made in 11( )B . The 

critical point of the proof is seen where the initial 

estimate of the difference
( ) ( )[ ] [ 1]m m

bn bnP T s P T s    . The factor 

 10.10
( ),n  which should be small, contains a far 

tail element from 1n


 of the form 1 1( ) ( ),n u n   

which is only small if 1 1,a   being otherwise of 

order 11( )aO n  
 for any 0,   since 2 1a   is 

in any case assumed. For / 2,s n  this gives rise 

to a contribution of order  11( )aO n   
 in the 

estimate of the difference 

[ ] [ 1],bn bnP T s P T s     which, in the 

remainder of the proof, is translated into a 

contribution of order 11( )aO tn   
for differences 

of the form [ ] [ 1],bn bnP T s P T s     finally 

leading to a contribution of order 1abn  
 for any 

0   in 
 7.7

( , ).n b  Some improvement would 

seem to be possible, defining the function g  by 

   ( ) 1 1 ,
w s w s t

g w
  

    differences that are of 

the form [ ] [ ]bn bnP T s P T s t     can be 

directly estimated, at a cost of only a single 

contribution of the form 1 1( ) ( ).n u n   Then, 

iterating the cycle, in which one estimate of a 

difference in point probabilities is improved to an 

estimate of smaller order, a bound of the form  

112[ ] [ ] ( )a

bn bnP T s P T s t O n t n        

 for any 0   could perhaps be attained, leading to 

a final error estimate in order  11( )aO bn n   

for any 0  , to replace 
 7.7

( , ).n b  This would 

be of the ideal order ( / )O b n for large enough ,b  

but would still be coarser for small .b   

 With b and n  as in the previous section, 

we wish to show that  

 

1

0 0

7,8

1
( ( [1, ]), ( [1, ])) ( 1) 1

2

( , ),

TV b bd L C b L Z b n E T ET

n b





   



  

 Where 

 
121 1

7.8
( , ) ( [ ])n b O n b n b n        for any 

0   under Conditions 0 1( ), ( )A D  and 12( ),B

with 12 . The proof uses sharper estimates. As 

before, we begin with the formula  

 

0
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Now we observe that  
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  The approximation in (1.2) is further 

simplified by noting that  

[ /2] [ /2]

0 0

0 0
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n n

b b

r s
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P T r P T s
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[ /2]

0 0

0 [ /2]

1 2 2

0 0 0

( ) 1
[ ] [ ]

1

1 ( 1 / 2 ) 2 1 , (1.3)

n

b b

r s n

b b b

s r
P T r P T s

n

n E T T n n ET



 

 

 

 
  



    

 

and then by observing that  

 

0 0
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1

0 0 0 0

2 2
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 Combining the contributions of (1.2) –

(1.3), we thus find tha
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 The quantity 
 7.8

( , )n b is seen to be of 

the order claimed under Conditions 0 1( ), ( )A D  and 

12( )B , provided that ( ) ;S     this 

supplementary condition can be removed if 

 10.8
( )n

 is replaced by 
 10.11

( )n
   in the 

definition of 
 7.8

( , )n b , has the required order 

without the restriction on the ir  implied by 

assuming that ( ) .S   Finally, a direct 

calculation now shows that 

0 0

0 0

0 0

[ ] [ ]( )(1 )

1
1

2

b b

r s

b b

P T r P T s s r

E T ET





  

 
    

 

  

 

 
 

C. Unrestricted Role Reduction 

 We now present a result that in many cases 

enables us to further reduce the size of the state 

space that must be explored. The idea is that given 

an initial state P, we can often perform the analysis 

using a smaller initial state and 

obtain identical results. It is important to note that 

this is significantly different than the Lower Bound 
LB(P) and Upper 

Bound UB(P) programs described in [12]. The 

LB(P) program removes all statements defining a 

role C.r 62 SR from P for the purpose of evaluating 

a query of the form X.u w {B | B 2 Principals}, 

whereas the UB(P) program adds a special principal 

_ representing all principals to each growth 

unrestricted role for the purposes of evaluating a 

query of the form {B | B 2 Principals} w A.r. Our 

reduction program removes all statements defining a 

role C.r 62 SR ^ C.r 62 GR for the purpose of 

evaluating a query of the form X.u w A.r. We define 

_R, a binary relation over policy states, by 
 P1 _R P2 if and only if P1 _ 7!R P2 and P2 

_ 7!R P1. Note that _R is an equivalence relation: 

(1) it is reflexive, as P _ 7!R P for all P; (2) it is 

symmetric by construction; (3) it is transitive 

because _ 7!R is transitive. We also define the core 

of P, coreR(P), to be the subset of P consisting of 

those statements that define growthrestricted or 

shrink-restricted roles. 

 Theorem 1. Given any policy states P1 and 

P2 and any restriction rule R, P1 _R P2 if and only 

if coreR(P1) = coreR(P2). 

Proof. The ―if‖ direction is straightforward: starting 
from any state P, it is clear that any other state with 

the same core is reachable from P. For the ―only if‖ 

direction, suppose coreR(P1) 6= coreR(P2). There 

are two cases, depending on whether the cores differ 

in statements that define roles that are growth-

restricted or roles that are shrink restricted. If 

coreR(P1)\coreR(P2) contains a statement defining a 

growth restricted role, then P2 _ 7!R P1 does not 

hold. If coreR(P1)\coreR(P2) contains a statement 

defining a shrink restricted role, then P1 _ 7!R P2 

does not hold. Given this result, it is clear that the 
least state (under the subset ordering) that is 

equivalent to a given P is coreR(P). It follows from 

the definition of _R and the transitivity of _ 7!R that 

for all P0, P _ 7!R P0 if and only if coreR(P) _ 7!R 

P0. Moreover, coreR(P) is the least set for which 

this is true. Thus, given an initial state P, it is both 

correct and more efficient to perform our analysis 

using coreR (P) as the initial state instead. 

Definition 3. Given a policy P and restriction rule R, 

URR (P, R) = coreR (P) 

 

Example 1.0.  Consider the point 

(0,...,0) nO   . For an arbitrary vector r , the 

coordinates of the point x O r   are equal to the 

respective coordinates of the vector 
1: ( ,... )nr x x x  and 

1( ,..., )nr x x . The vector 

r such as in the example is called the position vector 

or the radius vector of the point x  . (Or, in greater 

detail: r  is the radius-vector of x  w.r.t an origin 

O). Points are frequently specified by their radius-

vectors. This presupposes the choice of O as the 

―standard origin‖.   Let us summarize. We have 

considered 
n  and interpreted its elements in two 

ways: as points and as vectors. Hence we may say 

that we leading with the two copies of  :n  
n = 

{points},      
n = {vectors} Operations with 

vectors: multiplication by a number, addition. 

Operations with points and vectors: adding a vector 



 Akash K Singh / International Journal of Engineering Research and Applications  

(IJERA)                ISSN: 2248-9622               www.ijera.com  

Vol. 2, Issue 6, November- December 2012, pp. 

147 | P a g e  

 

to a point (giving a point), subtracting two points 

(giving a vector). 
n treated in this way is called an 

n-dimensional affine space. (An ―abstract‖ affine 

space is a pair of sets , the set of points and the set 

of vectors so that the operations as above are 

defined axiomatically). Notice that vectors in an 

affine space are also known as ―free vectors‖. 

Intuitively, they are not fixed at points and ―float 

freely‖ in space. From 
n considered as an affine 

space we can precede in two opposite directions: 
n  as an Euclidean space   

n as an affine 

space  
n as a manifold.Going to the left means 

introducing some extra structure which will make 

the geometry richer. Going to the right means 
forgetting about part of the affine structure; going 

further in this direction will lead us to the so-called 

―smooth (or differentiable) manifolds‖. The theory 

of differential forms does not require any extra 

geometry. So our natural direction is to the right. 

The Euclidean structure, however, is useful for 

examples and applications. So let us say a few 

words about it: 

 

Remark 1.0.  Euclidean geometry.  In 
n  

considered as an affine space we can already do a 

good deal of geometry. For example, we can 

consider lines and planes, and quadric surfaces like 
an ellipsoid. However, we cannot discuss such 

things as ―lengths‖, ―angles‖ or ―areas‖ and 

―volumes‖. To be able to do so, we have to 

introduce some more definitions, making 
n a 

Euclidean space. Namely, we define the length of a 

vector 
1( ,..., )na a a  to be  

1 2 2: ( ) ... ( ) (1)na a a     

After that we can also define distances between 

points as follows: 

( , ) : (2)d A B AB


  

 One can check that the distance so defined 

possesses natural properties that we expect: is it 

always non-negative and equals zero only for 

coinciding points; the distance from A to B is the 

same as that from B to A (symmetry); also, for three 
points, A, B and C, we have 

( , ) ( , ) ( , )d A B d A C d C B   (the ―triangle 

inequality‖). To define angles, we first introduce the 

scalar product of two vectors 

 
1 1( , ) : ... (3)n na b a b a b     

 Thus ( , )a a a  . The scalar product is 

also denote by dot: . ( , )a b a b , and hence is often 

referred to as the ―dot product‖ . Now, for nonzero 

vectors, we define the angle between them by the 

equality 

( , )
cos : (4)

a b

a b
    

The angle itself is defined up to an integral 

multiple of 2  . For this definition to be consistent 

we have to ensure that the r.h.s. of (4) does not 

exceed 1 by the absolute value. This follows from 

the inequality 
2 22( , ) (5)a b a b   

known as the Cauchy–Bunyakovsky–Schwarz 

inequality (various combinations of these three 

names are applied in different books). One of the 

ways of proving (5) is to consider the scalar square 

of the linear combination ,a tb  where t R . As  

( , ) 0a tb a tb    is a quadratic polynomial in t  

which is never negative, its discriminant must be 

less or equal zero. Writing this explicitly yields (5). 
The triangle inequality for distances also follows 

from the inequality (5). 

 

Example 1.1.    Consider the function ( ) if x x  

(the i-th coordinate). The linear function 
idx  (the 

differential of 
ix  ) applied to an arbitrary vector h  

is simply 
ih .From these examples follows that we 

can rewrite df  as 

1

1
... , (1)n

n

f f
df dx dx

x x

 
  
 

  which is the standard form. Once again: the 

partial derivatives in (1) are just the coefficients 

(depending on x ); 
1 2, ,...dx dx  are linear functions 

giving on an arbitrary vector h  its coordinates 
1 2, ,...,h h  respectively. Hence 

 

1

( ) 1
( )( )

... , (2)

hf x

n

n

f
df x h h

x

f
h

x


   







 

 

Theorem   1.7.     Suppose we have a parametrized 

curve ( )t x t  passing through 0

nx   at 

0t t  and with the velocity vector 0( )x t   Then  

0 0 0

( ( ))
( ) ( ) ( )( ) (1)

df x t
t f x df x

dt
   

  

Proof.  Indeed, consider a small increment of the 

parameter 0 0:t t t t  , Where 0t  . On 

the other hand, we have  

0 0 0( ) ( ) ( )( ) ( )f x h f x df x h h h      for 

an arbitrary vector h , where ( ) 0h   when
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0h  . Combining it together, for the increment 

of ( ( ))f x t   we obtain 

0 0

0

0

( ( ) ( )

( )( . ( ) )

( . ( ) ). ( )

( )( ). ( )

f x t t f x

df x t t t

t t t t t t

df x t t t

 

    

 

  

    

        

    

     

 For a certain ( )t   such that 

( ) 0t   when 0t   (we used the linearity 

of 0( )df x ). By the definition, this means that the 

derivative of ( ( ))f x t  at 0t t  is exactly

0( )( )df x  . The statement of the theorem can be 

expressed by a simple formula: 

1

1

( ( ))
... (2)n

n

df x t f f
x x

dt x x

 
  
 

  To calculate the value Of df  at a point 

0x  on a given vector   one can take an arbitrary 

curve passing Through 0x  at 0t  with   as the 

velocity vector at 0t and calculate the usual 

derivative of ( ( ))f x t  at 0t t . 

 

Theorem 1.8.  For functions , :f g U   ,

,nU     

 
( ) (1)

( ) . . (2)

d f g df dg

d fg df g f dg

  

 
   

 

Proof. Consider an arbitrary point 0x  and an 

arbitrary vector   stretching from it. Let a curve 

( )x t  be such that 0 0( )x t x  and 0( )x t  .  

Hence 

0( )( )( ) ( ( ( )) ( ( )))
d

d f g x f x t g x t
dt

     

at 0t t  and  

0( )( )( ) ( ( ( )) ( ( )))
d

d fg x f x t g x t
dt

    

at 0t t  Formulae (1) and (2) then immediately 

follow from the corresponding formulae for the 

usual derivative Now, almost without change the 

theory generalizes to functions taking values in  
m  instead of  . The only difference is that now 

the differential of a map : mF U    at a point x  

will be a linear function taking vectors in 
n  to 

vectors in 
m (instead of  ) . For an arbitrary 

vector | ,nh    

 

( ) ( ) ( )( )F x h F x dF x h     

+ ( ) (3)h h   

Where ( ) 0h    when  0h . We have  

1( ,..., )mdF dF dF  and  

1

1

1 1

11

1

...

....

... ... ... ... (4)

...

n

n

n

nm m

n

F F
dF dx dx

x x

F F

dxx x

dxF F

x x

 
  
 

  
     

   
      
 
  

  In this matrix notation we have to write 

vectors as vector-columns. 

 

Theorem 1.9. For an arbitrary parametrized curve 

( )x t  in 
n , the differential of a   map 

: mF U    (where 
nU   ) maps the velocity 

vector ( )x t  to the velocity vector of the curve 

( ( ))F x t  in :m   

.( ( ))
( ( ))( ( )) (1)

dF x t
dF x t x t

dt
     

 

Proof.  By the definition of the velocity vector, 
.

( ) ( ) ( ). ( ) (2)x t t x t x t t t t      

  Where ( ) 0t    when 0t  . By 

the definition of the differential,  

( ) ( ) ( )( ) ( ) (3)F x h F x dF x h h h   

  

Where ( ) 0h   when 0h . we obtain  

.

.

. .

.

( ( )) ( ( ). ( ) )

( ) ( )( ( ) ( ) )

( ( ) ( ) ). ( ) ( )

( ) ( )( ( ) ( )

h

F x t t F x x t t t t

F x dF x x t t t t

x t t t t x t t t t

F x dF x x t t t t





  



       

      

       

     



   

 

For some ( ) 0t    when 0t  . This 

precisely means that 
.

( ) ( )dF x x t  is the velocity 

vector of ( )F x . As every vector attached to a point 
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can be viewed as the velocity vector of some curve 

passing through this point, this theorem gives a clear 

geometric picture of dF  as a linear map on vectors. 

   

Theorem 1.10 Suppose we have two maps 

:F U V  and : ,G V W  where 

, ,n m pU V W      (open domains). Let 

: ( )F x y F x . Then the differential of the 

composite map :GoF U W  is the composition 

of the differentials of F  and :G   

( )( ) ( ) ( ) (4)d GoF x dG y odF x   

 

Proof.   We can use the description of the 

differential .Consider a curve ( )x t  in 
n  with the 

velocity vector 
.

x . Basically, we need to know to 

which vector in  
p it is taken by ( )d GoF . the 

curve ( )( ( ) ( ( ( ))GoF x t G F x t . By the same 

theorem, it equals the image under dG  of the 

Anycast Flow vector to the curve ( ( ))F x t  in 
m . 

Applying the theorem once again, we see that the 

velocity vector to the curve ( ( ))F x t is the image 

under dF of the vector 
.

( )x t . Hence 

. .

( )( ) ( ( ))d GoF x dG dF x   for an arbitrary 

vector 
.

x  . 

 

Corollary 1.0.    If we denote coordinates in 
n by 

1( ,..., )nx x  and in 
m by 

1( ,..., )my y , and write 

1

1

1

1

... (1)

... , (2)

n

n

n

n

F F
dF dx dx

x x

G G
dG dy dy

y y

 
  
 

 
  
 

  

Then the chain rule can be expressed as follows: 

1

1
( ) ... , (3)m

m

G G
d GoF dF dF

y y

 
  
 

  

 Where 
idF  are taken from (1). In other 

words, to get ( )d GoF  we have to substitute into 

(2) the expression for 
i idy dF  from (3). This 

can also be expressed by the following matrix 

formula: 

  

1 1 1 1

11 1

1 1

.... ....

( ) ... ... ... ... ... ... ... (4)

... ...

m n

np p m m

m n

G G F F

dxy y x x

d GoF

dxG G F F

y y x x

     
         
    
          

       

 

 

i.e., if dG  and dF  are expressed by matrices of 

partial derivatives, then ( )d GoF  is expressed by 

the product of these matrices. This is often written 

as  

 

1 11 1

11

1 1

1 1

1

1

........

... ... ... ... ... ...

... ...

....

... ... ... , (5)

...

mn

p p p p

n m

n

m m

n

z zz z

y yx x

z z z z

x x y y

y y

x x

y y

x x

    
        
  
  

     
         

  
 
  

 
 
  

 
  

 

Or 

1

, (6)
im

a i a
i

z z y

x y x

 



  


  
   

 Where it is assumed that the dependence of 
my  on 

nx  is given by the map F , the 

dependence of 
pz  on 

my  is given by the 

map ,G  and the dependence of  
pz on 

nx is given by the composition GoF .  

 

Definition 1.6.  Consider an open domain 
nU  

. Consider also another copy of 
n , denoted for 

distinction 
n

y , with the standard coordinates 

1( ... )ny y . A system of coordinates in the open 

domain U  is given by a map : ,F V U  where 

n

yV    is an open domain of 
n

y , such that the 

following three conditions are satisfied :  

(1) F  is smooth; 

(2) F  is invertible; 

(3) 
1 :F U V   is also smooth 

 

 The coordinates of a point x U  in this 

system are the standard coordinates of 
1( ) n

yF x   

In other words,  
1 1: ( ..., ) ( ..., ) (1)n nF y y x x y y

  Here the variables 
1( ..., )ny y  are the 

―new‖ coordinates of the point x   
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Example  1.2.     Consider a curve in 
2  specified 

in polar coordinates as  

( ) : ( ), ( ) (1)x t r r t t     

We can simply use the chain rule. The map 

( )t x t  can be considered as the composition of 

the maps  ( ( ), ( )), ( , ) ( , )t r t t r x r    . 

Then, by the chain rule, we have  
. . .

(2)
dx x dr x d x x

x r
dt r dt dt r




 

   
    

   

 Here 
.

r  and 
.

  are scalar coefficients depending on 

t , whence the partial derivatives ,x x
r 

 
 

  are 

vectors depending on point in 
2 . We can compare 

this with the formula in the ―standard‖ coordinates: 
. . .

1 2x e x e y  . Consider the vectors   ,x x
r 

 
 

. 

Explicitly we have  

(cos ,sin ) (3)

( sin , cos ) (4)

x

r

x
r r

 

 








 



  

From where it follows that these vectors make a 

basis at all points except for the origin (where 

0r  ). It is instructive to sketch a picture, drawing 

vectors corresponding to a point as starting from 

that point. Notice that  ,x x
r 

 
 

 are, 

respectively, the velocity vectors for the curves 

( , )r x r    0( )fixed   and 

0( , ) ( )x r r r fixed   . We can conclude 

that for an arbitrary curve given in polar coordinates 

the velocity vector will have components 
. .

( , )r   if 

as a basis we take : , : :r
x xe e

r  
  
 

  

. . .

(5)rx e r e      

A characteristic feature of the basis ,re e  is that it 

is not ―constant‖ but depends on point. Vectors 

―stuck to points‖ when we consider curvilinear 

coordinates. 

 

Proposition  1.3.   The velocity vector has the same 

appearance in all coordinate systems. 

Proof.        Follows directly from the chain rule and 

the transformation law for the basis ie .In particular, 

the elements of the basis ii
xe

x



 (originally, a 

formal notation) can be understood directly as the 

velocity vectors of the coordinate lines 

1( ,..., )i nx x x x   (all coordinates but 
ix  are 

fixed). Since we now know how to handle velocities 

in arbitrary coordinates, the best way to treat the 

differential of a map : n mF    is by its action 

on the velocity vectors. By definition, we set 

0 0 0

( ) ( ( ))
( ) : ( ) ( ) (1)

dx t dF x t
dF x t t

dt dt


  

Now 0( )dF x  is a linear map that takes vectors 

attached to a point 0

nx   to vectors attached to 

the point ( ) mF x    

1

1

1 1

11

1

1

...

...

( ,..., ) ... ... ... ... , (2)

...

n

n

n

m

nm m

n

F F
dF dx dx

x x

F F

dxx x

e e

dxF F

x x

 
  
 

  
     
  
      
 
  

  

In particular, for the differential of a function we 

always have  

1

1
... , (3)n

n

f f
df dx dx

x x

 
  
 

  

 Where 
ix  are arbitrary coordinates. The 

form of the differential does not change when we 
perform a change of coordinates. 

 

Example  1.3   Consider a 1-form in 
2  given in 

the standard coordinates: 

 

A ydx xdy     In the polar coordinates we will 

have cos , sinx r y r   , hence 

cos sin

sin cos

dx dr r d

dy dr r d

  

  

 

 
  

Substituting into A , we get 

2 2 2 2

sin (cos sin )

cos (sin cos )

(sin cos )

A r dr r d

r dr r d

r d r d

   

   

   

  

 

  

  

Hence  
2A r d  is the formula for A  in the 

polar coordinates. In particular, we see that this is 

again a 1-form, a linear combination of the 

differentials of coordinates with functions as 

coefficients. Secondly, in a more conceptual way, 

we can define a 1-form in a domain U  as a linear 

function on vectors at every point of U : 
1

1( ) ... , (1)n

n         
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If 
i

ie  , where ii
xe

x



. Recall that the 

differentials of functions were defined as linear 

functions on vectors (at every point), and  

( ) (2)i i i

j jj

x
dx e dx

x


 
  

 
    at 

every point x .  

 

Theorem  1.9.   For arbitrary 1-form   and path 

, the integral 



  does not change if we change 

parametrization of   provide the orientation 

remains the same. 

Proof: Consider 
'

( ( )),
dx

x t
dt

  and  

'

'
( ( ( ))),

dx
x t t

dt
  As 

'

'
( ( ( ))),

dx
x t t

dt
 =

'

' '
( ( ( ))), . ,

dx dt
x t t

dt dt
   

 

D. Cone of Influence Reduction 

 A given security policy P may contain 

statements that do not affect the membership of 

queried roles. Such extraneous statements can safely 

be filtered from the policy model in order to reduce 

the size of the problem. This reduction removes 
statements that are said to be outside of a role‘s cone 

of influence. This reduction is particularly 

significant because it has the potential to remove 

linked or intersection inclusion type statements that 

contribute to a larger number of principals in the 

model. Given a set of roles, _, the following 

definition constructs a set of roles in P. A role, _, is 

in the constructed set if the membership of some 

role in _ depends in some way on the membership 

of _. This dependency is reflective of relationship 

established between roles via RT statements. We 
call this set of roles DefRoles. 

 

Definition 4. Let _ and M be sets of roles, and P be a 

policy. We define DefRoles(P,_,M) to be the least 

set of 

roles O satisfying the following conditions: 

• _ _ O 

• (_ 2 O ^ _   B.r1 2 P ^ B.r1 62M) ) B.r1 2 O 

• (_ 2 O ^ _   B.r1.r2 2 P ^ D 2 Principals) ) ((B.r1 

62M) B.r1 2 O) ^ (D.r2 62M) D.r2 2 O)) 

• (_ 2 O ^ _   B.r1 \ C.r2 2 P) ) ((B.r1 62 M ) B.r1 2 

O) ^ (C.r2 62M) C.r2 2 O)) 
Using DefRoles, we define the Cone of Influence 

(COI) as a policy constructed from those statements 

that define roles in DefRoles. In other words, we 

retain only those statements that influence the 

answer to an RCPI. 

 

Definition 5. Given an RCPI hP,R,X.u w A.ri, we 

define 

COI(hP,R,X.u w A.ri) 

= P_DefRoles(P,{X.u},SR)[DefRoles(P,{A.r},GR) 

 

Theorem 2. Given any RCPI hP,R,X.u w A.ri, let 
P0 = COI(hP,R,X.u w A.ri). Then hP,R,X.u w A.ri 

is satisfied if and only if hP0,R,X.u w A.ri is 

satisfied. Proof for this and subsequent reductions 

are given in [17]. 

Let p  be a rational prime and let ( ).pK    

We write   for p  or this section. Recall that K  

has degree ( ) 1p p    over .  We wish to 

show that  .KO    Note that   is a root of 

1,px   and thus is an algebraic integer; since K  

is a ring we have that   .KO   We give a 

proof without assuming unique factorization of 

ideals. We begin with some norm and trace 

computations. Let j  be an integer. If j is not 

divisible by ,p  then 
j  is a primitive 

thp  root of 

unity, and thus its conjugates are 
2 1, ,..., .p   

 

Therefore 

 
2 1

/ ( ) ... ( ) 1 1j p

K pTr            

  

If p  does divide ,j  then 1,j   so it has only 

the one conjugate 1, and  
/ ( ) 1j

KTr p    By 

linearity of the trace, we find that  
2

/ /

1

/

(1 ) (1 ) ...

(1 )

K K

p

K

Tr Tr

Tr p

 

 

   

  

 



 

We also need to compute the norm of 1  . For 

this, we use the factorization  

 

1 2

2 1

... 1 ( )

( )( )...( );

p p

p

p

x x x

x x x  

 



    

   
  

Plugging in 1x   shows that  

 
2 1(1 )(1 )...(1 )pp          

Since the (1 )j  are the conjugates of (1 ),

this shows that  / (1 )KN p   The key result 

for determining the ring of integers KO  is the 

following. 

 

LEMMA 1.9 

  (1 ) KO p      
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Proof.  We saw above that p  is a multiple of 

(1 )  in ,KO  so the inclusion 

(1 ) KO p   
 
is immediate.  Suppose 

now that the inclusion is strict. Since 

(1 ) KO  is an ideal of   containing p  

and p is a maximal ideal of  , we must have  

(1 ) KO   
 
Thus we can write 

 1 (1 )     

For some .KO   That is, 1   is a unit in .KO   

 

COROLLARY 1.1   For any ,KO   

/ ((1 ) ) .KTr p      

PROOF.       We have  

 

/ 1 1

1 1 1 1

1

1 1

((1 ) ) ((1 ) ) ... ((1 ) )

(1 ) ( ) ... (1 ) ( )

(1 ) ( ) ... (1 ) ( )

K p

p p

p

p

Tr        

       

     



 





     

    

    



 

 Where the i  are the complex embeddings 

of K  (which we are really viewing as 

automorphisms of K ) with the usual ordering.  

Furthermore, 1
j  is a multiple of 1   in KO  

for every 0.j   Thus 

/ ( (1 )) (1 )K KTr O      
Since the trace is 

also a rational integer. 

 

PROPOSITION 1.4  Let p  be a prime number 

and let | ( )pK    be the 
thp  cyclotomic field. 

Then  

[ ] [ ] / ( ( ));K p pO x x     Thus 

21, ,..., p

p p  
 is an integral basis for KO . 

PROOF.    Let   KO   and write 

2

0 1 2... p

pa a a   

      With .ia   

Then 

2

0 1

2 1

2

(1 ) (1 ) ( ) ...

( )p p

p

a a

a

    

  



     

 
  

By the linearity of the trace and our above 

calculations we find that  / 0( (1 ))KTr pa    

We also have  

/ ( (1 )) ,KTr p    so 0a    Next 

consider the algebraic integer  
1 3

0 1 2 2( ) ... ;p

pa a a a    

      This is 

an algebraic integer since 
1 1p    is. The same 

argument as above shows that 1 ,a   and 

continuing in this way we find that all of the ia  are 

in  . This completes the proof. 

  

Example 1.4   Let K   , then the local ring 

( )p  is simply the subring of   of rational 

numbers with denominator relatively prime to p . 

Note that this ring   ( )p is not the ring p of p -

adic integers; to get  p one must complete ( )p . 

The usefulness of ,K pO  comes from the fact that it 

has a particularly simple ideal structure. Let a be 

any proper ideal of ,K pO  and consider the ideal 

Ka O  of .KO  We claim that 

,( ) ;K K pa a O O     That is, that a  is generated 

by the elements of a  in .Ka O  It is clear from 

the definition of an ideal that ,( ) .K K pa a O O   

To prove the other inclusion, let   be any element 

of a . Then we can write /    where 

KO   and .p   In particular, a   (since 

/ a    and a  is an ideal), so KO   and 

.p   so .Ka O    Since ,1/ ,K pO   this 

implies that ,/ ( ) ,K K pa O O      as 

claimed.We can use this fact to determine all of the 

ideals of , .K pO  Let a  be any ideal of ,K pO and 

consider the ideal factorization of Ka O in .KO  

write it as 
n

Ka O p b   For some n  and some 

ideal ,b  relatively prime to .p  we claim first that 

, , .K p K pbO O  We now find that 

  
, , ,( ) n n

K K p K p K pa a O O p bO p O      

Since , .K pbO  Thus every ideal of ,K pO  has the 

form 
,

n

K pp O  for some ;n  it follows immediately 

that ,K pO is noetherian. It is also now clear that 

,

n

K pp O is the unique non-zero prime ideal in ,K pO

. Furthermore, the inclusion , ,/K K p K pO O pO  

Since , ,K p KpO O p   this map is also 

surjection, since the residue class of ,/ K pO    

(with KO   and p  ) is the image of 
1 

 

in / ,K pO  which makes sense since   is invertible 
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in / .K pO  Thus the map is an isomorphism. In 

particular, it is now abundantly clear that every non-

zero prime ideal of ,K pO is maximal.  To 

show that ,K pO is a Dedekind domain, it remains to 

show that it is integrally closed in K . So let 

K   be a root of a polynomial with coefficients 

in  , ;K pO  write this polynomial as  

11 0

1 0

...m mm

m

x x
 

 





    With i KO   and 

.i K pO   Set 0 1 1... .m      Multiplying by 

m  we find that   is the root of a monic 

polynomial with coefficients in .KO  Thus 

;KO   since ,p   we have 

,/ K pO    . Thus  ,K pO is integrally close 

in .K   

 

COROLLARY 1.2.   Let K  be a number field of 

degree n  and let   be in KO  then 

'

/ /( ) ( )K K KN O N     

PROOF.  We assume a bit more Galois theory than 

usual for this proof. Assume first that /K   is 

Galois. Let   be an element of ( / ).Gal K   It is 

clear that /( ) / ( ) ;K KO O      since 

( ) ,K KO O   this shows that 

' '

/ /( ( ) ) ( )K K K KN O N O    . Taking the 

product over all ( / ),Gal K    we have 

' '

/ / /( ( ) ) ( )n

K K K K KN N O N O     Since 

/ ( )KN   is a rational integer and KO  is a free -

module of rank ,n    

// ( )K K KO N O   Will have order 
/ ( ) ;n

KN   

therefore 

 
'

/ / /( ( ) ) ( )n

K K K K KN N O N O     

This completes the proof.  In the general case, let L  

be the Galois closure of K  and set [ : ] .L K m   

E. Encryption Keys 

 We use symmetric keys to encrypt and 

decrypt attribute values. These keys are distributed 

only to the brokers that are trusted with the attribute 
values. The system will never deliver these keys to 

clients. This reduces the number of nodes that are 

trusted with sensitive keys, and that take part in key 

management protocols. Note that this does not affect 

security since local brokers encrypt and decrypt 

attribute values on behalf of connected clients, and 

deliver events to clients over secure links. To 

support cryptographic properties such as key 

freshness, and forward and backward secrecy [22], 

the system requires key management service(s). The 

most suitable key management strategy depends on 

the broker-network architecture. For EDSAC21 we 

assume a stable configuration with static, multi-hop, 
interbroker connections and are investigating a tree-

based approach [22]. However, the dynamic nature 

of a peer-to-peer routing layer presents special 

problems, and we are also evaluating an alternative, 

ad-hoc network based approach [23]. Efficient 

group key management [24] is not the focus of this 

paper. Overall, the efficiency of key distribution will 

have little impact on performance, since symmetric 

keys are distributed only to brokers, as opposed to 

publishers and subscribers. Relatively few entities 

are involved in key dissemination, and changes will 

be infrequent. However, correct key management is 
essential for the security of the system. 

V. CASE STUDY 
 We now illustrate our architecture for a city 

in which the publish/subscribe systems of different 

emergency services interoperate securely and 

efficiently. We use a break-in to a university 

building as an example. Fig. 4 shows the principals, 

brokers and messages discussed below.We assume 

that equipment failure has left the police network 

partititioned, and that broker b1 is connected only 

through the fire network. 1) We focus on two police 

officers on night shift; part of their duty is to 

respond to notifications of burglaries. We assume 
that the event-type BurglaryEvent is already 

advertised when the officers come on duty. This 

means that a rendezvous node b5 is assigned for the 

type and subscriptions can be made. We shall see 

that further advertisements, and subsequent 

publications, can be made as burglaries are detected 

in different areas. We assume that both officers 

authenticate with their local OASIS service on 

coming on duty and, assuming that their credentials 

are valid, acquire the role with associated privilege 

to send subscription messages: s1 and s2 
respectively. 

 

Officer 1 is a probationary officer, who moves 

between different parts of the city. Officer 2 is 

located in West Cambridge. Suppose that at the start 
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of her shift officer 2 subscribes to 

BurglaryEvent(location = ‗West Cambridge‘). Since 

this subscription requires filtering on the location 

attribute, and this attribute is encrypted with the 

police key (recall the event type hierarchy shown in 

Fig. 2), the officer knows that her local broker must 

be trusted with the police key, i.e. a P broker. 
Officer 1 tries to subscribe to all burglary events 

with a police code less than 4, 

BurglaryEvent(polCode < 4), but the request is only 

partially granted. Instead, the subscription is 

restricted, as described in Section 4, to deliver only 

those events that occur in the officer‘s current 

location. This restriction, which is based on a 

dynamically checked environmental constraint, is 

shown in Fig. 4, attached to his broker connection. 

2) Any broker through which s1 and/or s2 travel 

(towards their rendezvous node and then along the 

reverse path of advertisements) will update its 
internal routing state appropriately. Note that our 

security architecture augments standard Hermes 

subscription setup behaviour when we reach broker 

b2. Whilst s1 travels through this broker, the broker 

is not part of the police network, and thus will not 

have access to the police key. Therefore this broker 

will be forced to degrade routing efficiency by 

ignoring police officer 1‘s filter on the polCode 

attribute, which it cannot decrypt, and routing all 

events forward. 

 
3) We show a duty-officer at a police station who 

must notify police officers of reported burglaries. 

Like officers 1 and 2, the duty-officer authenticates 

himself with his local OASIS service, and acquires  

privileges to advertise BurglaryEvents. Again, his 

local broker needs access to the police key. The 

consequent advertisement message is shown as a in 

Fig. 4. This step could occur in parallel with a 

subscription, see Step 1. If a broker notices that an 

existing subscription matches a new advertisement, 

it will resend the subscription message along the 

reverse path of the new advertisement towards the 
publisher. All this occurs at the start of the officers‘ 

sessions, a long time (in publish/ subscribe terms) 

before the actual burglary occurs. 
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